
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024 911

Software Testing With Large Language Models:
Survey, Landscape, and Vision

Junjie Wang , Member, IEEE, Yuchao Huang , Chunyang Chen , Zhe Liu ,
Song Wang , Member, IEEE, and Qing Wang , Member, IEEE

Abstract—Pre-trained large language models (LLMs) have
recently emerged as a breakthrough technology in natural
language processing and artificial intelligence, with the ability to
handle large-scale datasets and exhibit remarkable performance
across a wide range of tasks. Meanwhile, software testing is a
crucial undertaking that serves as a cornerstone for ensuring
the quality and reliability of software products. As the scope
and complexity of software systems continue to grow, the
need for more effective software testing techniques becomes
increasingly urgent, making it an area ripe for innovative
approaches such as the use of LLMs. This paper provides a
comprehensive review of the utilization of LLMs in software
testing. It analyzes 102 relevant studies that have used LLMs
for software testing, from both the software testing and LLMs
perspectives. The paper presents a detailed discussion of the
software testing tasks for which LLMs are commonly used,
among which test case preparation and program repair are the
most representative. It also analyzes the commonly used LLMs,
the types of prompt engineering that are employed, as well as the
accompanied techniques with these LLMs. It also summarizes the
key challenges and potential opportunities in this direction. This
work can serve as a roadmap for future research in this area,
highlighting potential avenues for exploration, and identifying
gaps in our current understanding of the use of LLMs in
software testing.

Index Terms—Pre-trained large language model, software
testing, LLM, GPT.

Manuscript received 15 July 2023; revised 8 February 2024; accepted
9 February 2024. Date of publication 20 February 2024; date of current version
19 April 2024. This work was supported in part by the National Natural
Science Foundation of China under Grant 62232016, Grant 62072442, and
Grant 62272445; in part by Youth Innovation Promotion Association Chinese
Academy of Sciences, Basic Research Program of ISCAS under Grant ISCAS-
JCZD-202304; and in part by Major Program of ISCAS under Grant ISCAS-
ZD-202302. Recommended for acceptance by L. Mariani. (Corresponding
authors: Junjie Wang; Qing Wang.)

Junjie Wang, Yuchao Huang, Zhe Liu, and Qing Wang are with
State Key Laboratory of Intelligent Game, Institute of Software Chi-
nese Academy of Sciences, University of Chinese Academy of Sciences,
Beijing 100190, China (e-mail: junjie@iscas.ac.cn; yuchao2019@iscas.ac.cn;
liuzhe2020@iscas.ac.cn; wq@iscas.ac.cn).

Chunyang Chen is with Technical University of Munich, D-80333 Munich,
Germany (e-mail: chunyang.chen@monash.edu).

Song Wang is with York University, Toronto, ON M3J 1P, Canada (e-mail:
wangsong@yorku.ca).

This article has supplementary downloadable material available at https://
doi.org/10.1109/TSE.2024.3368208, provided by the authors.

Digital Object Identifier 10.1109/TSE.2024.3368208

I. INTRODUCTION

SOFTWARE testing is a crucial undertaking that serves as
a cornerstone for ensuring the quality and reliability of

software products. Without the rigorous process of software
testing, software enterprises would be reluctant to release their
products into the market, knowing the potential consequences
of delivering flawed software to end-users. By conducting thor-
ough and meticulous testing procedures, software enterprises
can minimize the occurrence of critical software failures, us-
ability issues, or security breaches that could potentially lead to
financial losses or jeopardize user trust. Additionally, software
testing helps to reduce maintenance costs by identifying and
resolving issues early in the development lifecycle, preventing
more significant complications down the line [1], [2].

The significance of software testing has garnered substantial
attention within the research and industrial communities. In
the field of software engineering, it stands as an immensely
popular and vibrant research area. One can observe the unde-
niable prominence of software testing by simply examining the
landscape of conferences and symposiums focused on software
engineering. Amongst these events, topics related to software
testing consistently dominate the submission numbers and are
frequently selected for publication.

While the field of software testing has gained significant
popularity, there remain dozens of challenges that have not been
effectively addressed. For example, one such challenge is auto-
mated unit test case generation. Although various approaches,
including search-based [3], [4], constraint-based [5] or random-
based [6] techniques to generate a suite of unit tests, the cover-
age and the meaningfulness of the generated tests are still far
from satisfactory [7], [8]. Similarly, when it comes to mobile
GUI testing, existing studies with random-/rule-based methods
[9], [10], model-based methods [11], [12], and learning-based
methods [13] are unable to understand the semantic informa-
tion of the GUI page and often fall short in achieving com-
prehensive coverage [14], [15]. Considering these limitations,
numerous research efforts are currently underway to explore
innovative techniques that can enhance the efficacy of software
testing tasks, among which large language models are the most
promising ones.

Large language models (LLMs) such as T5 and GPT-3
have revolutionized the field of natural language processing
(NLP) and artificial intelligence (AI). These models, initially

0098-5589 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9941-6713
https://orcid.org/0000-0003-1026-9516
https://orcid.org/0000-0003-2011-9618
https://orcid.org/0000-0001-9709-8275
https://orcid.org/0000-0003-0531-5717
https://orcid.org/0000-0002-2618-5694
mailto:junjie@iscas.ac.cn
mailto:yuchao2019@iscas.ac.cn
mailto:liuzhe2020@iscas.ac.cn
mailto:wq@iscas.ac.cn
mailto:chunyang.chen@monash.edu
mailto:wangsong@yorku.ca
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1109/TSE.2024.3368208

912 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

pre-trained on extensive corpora, have exhibited remarkable
performance across a wide range of NLP tasks including
question-answering, machine translation, and text generation
[16], [17], [18], [19]. In recent years, there has been a sig-
nificant advancement in LLMs with the emergence of models
capable of handling even larger-scale datasets. This expansion
in model size has not only led to improved performance but also
opened up new possibilities for applying LLMs as Artificial
General Intelligence. Among these advanced LLMs, models
like ChatGPT1 and LLaMA2 boast billions of parameters. Such
models hold tremendous potential for tackling complex practi-
cal tasks in domains like code generation and artistic creation.
With their expanded capacity and enhanced capabilities, LLMs
have become game-changers in NLP and AI, and are driving
advancements in other fields like coding and software testing.

LLMs have been used for various coding-related tasks in-
cluding code generation and code recommendation [20], [21],
[22], [23]. On one hand, in software testing, there are many
tasks related to code generation, such as unit test generation
[7], where the utilization of LLMs is expected to yield good
performance. On the other hand, software testing possesses
unique characteristics that differentiate it from code generation.
For example, code generation primarily focuses on producing
a single, correct code snippet, whereas software testing often
requires generating diverse test inputs to ensure better coverage
of the software under test [1]. The existence of these differences
introduces new challenges and opportunities when employing
LLMs for software testing. Moreover, people have benefited
from the excellent performance of LLMs in generation and
inference tasks, leading to the emergence of dozens of new
practices that use LLMs for software testing.

This article presents a comprehensive review of the utiliza-
tion of LLMs in software testing. We collect 102 relevant papers
and conduct a thorough analysis from both software testing and
LLMs perspectives, as roughly summarized in Fig. 1.

From the viewpoint of software testing, our analysis involves
an examination of the specific software testing tasks for which
LLMs are employed. Results show that LLMs are commonly
used for test case preparation (including unit test case genera-
tion, test oracle generation, and system test input generation),
program debugging, and bug repair, while we do not find
the practices for applying LLMs in the tasks of early testing
life-cycle (such as test requirement, test plan, etc). For each test
task, we would provide detailed illustrations showcasing the
utilization of LLMs in addressing the task, highlighting
commonly-used practices, tracking technology evolution
trends, and summarizing achieved performance, so as to
facilitate readers in gaining a thorough overview of how LLMs
are employed across various testing tasks.

From the viewpoint of LLMs, our analysis includes the
commonly used LLMs in these studies, the types of prompt
engineering, the input of the LLMs, as well as the accompanied
techniques with these LLMs. Results show that about one-
third of the studies utilize the LLMs through pre-training or

1https://openai.com/blog/chatgpt
2https://ai.meta.com/blog/large-language-model-llama-meta-ai/

Fig. 1. Structure of the contents in this paper (the numbers in bracket
indicates the number of involved papers, and a paper might involve zero or
multiple items).

fine-tuning schema, while the others employ prompt engineer-
ing to communicate with LLMs to steer their behavior for
desired outcomes. For prompt engineering, the zero-shot learn-
ing and few-shot learning strategies are most commonly used,
while other advances like chain-of-thought promoting and self-
consistency are rarely utilized. Results also show that traditional
testing techniques like differential testing and mutation testing
are usually accompanied by LLMs to help generate more diver-
sified tests.

Furthermore, we summarize the key challenges and poten-
tial opportunities in this direction. Although software testing
with LLMs has undergone significant growth in the past two
years, there are still challenges in achieving high coverage of
the testing, test oracle problem, rigorous evaluations, and real-
world application of LLMs in software testing. Since it is a new
emerging field, there are many research opportunities, including
exploring LLMs in an early stage of testing, exploring LLMs
for more types of software and non-functional testing, exploring
advanced prompt engineering, as well as incorporating LLMs
with traditional techniques.

This paper makes the following contributions:
• We thoroughly analyze 102 relevant studies that used

LLMs for software testing, regarding publication trends,
distribution of publication venues, etc.

• We conduct a comprehensive analysis from the perspec-
tive of software testing to understand the distribution of
software testing tasks with LLM and present a thorough
discussion about how these tasks are solved with LLM.

• We conduct a comprehensive analysis from the perspective
of LLMs, and uncover the commonly-used LLMs, the

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

https://openai.com/blog/chatgpt
https://ai.meta.com/blog/large-language-model-llama-meta-ai/

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 913

types of prompt engineering, input of the LLMs, as well
as the accompanied techniques with these LLMs.

• We highlight the challenges in existing studies and present
potential opportunities for further studies.

• We maintain a GitHub website https://github.com/LLM-
Testing/LLM4SoftwareTesting that serves as a platform
for sharing and hosting the latest publications about soft-
ware testing with LLM.

We believe that this work will be valuable to both researchers
and practitioners in the field of software engineering, as it pro-
vides a comprehensive overview of the current state and future
vision of using LLMs for software testing. For researchers, this
work can serve as a roadmap for future research in this area,
highlighting potential avenues for exploration and identifying
gaps in our current understanding of the use of LLMs in soft-
ware testing. For practitioners, this work can provide insights
into the potential benefits and limitations of using LLMs for
software testing, as well as practical guidance on how to effec-
tively integrate them into existing testing processes. By provid-
ing a detailed landscape of the current state and future vision of
using LLMs for software testing, this work can help accelerate
the adoption of this technology in the software engineering
community and ultimately contribute to improving the quality
and reliability of software systems.

II. BACKGROUND

A. Large Language Model (LLM)

Recently, pre-trained language models (PLMs) have been
proposed by pretraining Transformer-based models over large-
scale corpora, showing strong capabilities in solving various
natural language processing (NLP) tasks [16], [17], [18], [19].
Studies have shown that model scaling can lead to improved
model capacity, prompting researchers to investigate the scal-
ing effect through further parameter size increases. Interest-
ingly, when the parameter scale exceeds a certain threshold,
these larger language models demonstrate not only significant
performance improvements but also special abilities such as
in-context learning, which are absent in smaller models such
as BERT.

To discriminate the language models in different parameter
scales, the research community has coined the term large lan-
guage models (LLM) for the PLMs of significant size. LLMs
typically refer to language models that have hundreds of bil-
lions (or more) of parameters and are trained on massive text
data such as GPT-3, PaLM, Codex, and LLaMA. LLMs are
built using the Transformer architecture, which stacks multi-
head attention layers in a very deep neural network. Existing
LLMs adopt similar model architectures (Transformer) and pre-
training objectives (language modeling) as small language mod-
els, but largely scale up the model size, pre-training data, and
total compute power. This enables LLMs to better understand
natural language and generate high-quality text based on given
context or prompts.

Note that, in existing literature, there is no formal consensus
on the minimum parameter scale for LLMs, since the model
capacity is also related to data size and total compute. In a

recent survey of LLMs [17], the authors focus on discussing
the language models with a model size larger than 10B. Un-
der their criteria, the first LLM is T5 released by Google in
2019, followed by GPT-3 released by OpenAI in 2020, and
there are more than thirty LLMs released between 2021 and
2023 indicating its popularity. In another survey of unifying
LLMs and knowledge graphs [24], the authors categorize the
LLMs into three types: encoder-only (e.g., BERT), encoder-
decoder (e.g., T5), and decoder-only network architecture (e.g.,
GPT-3). In our review, we take into account the categoriza-
tion criteria of the two surveys and only consider the encoder-
decoder and decoder-only network architecture of pre-training
language models, since they can both support generative tasks.
We do not consider the encoder-only network architecture be-
cause they cannot handle generative tasks, were proposed rel-
atively early (e.g., BERT in 2018), and there are almost no
models using this architecture after 2021. In other words, the
LLMs discussed in this paper not only include models with
parameters of over 10B (as mentioned in [17]) but also include
other models that use the encoder-decoder and decoder-only
network architecture (as mentioned in [24]), such as BART with
140M parameters and GPT-2 with parameter sizes ranging from
117M to 1.5B. This is also to potentially include more studies
to demonstrate the landscape of this topic.

B. Software Testing

Software testing is a crucial process in software development
that involves evaluating the quality of a software product. The
primary goal of software testing is to identify defects or errors
in the software system that could potentially lead to incorrect or
unexpected behavior. The whole life cycle of software testing
typically includes the following tasks (demonstrated in Fig. 4):

• Requirement Analysis: analyze the software requirements
and identify the testing objectives, scope, and criteria.

• Test Plan: develop a test plan that outlines the testing
strategy, test objectives, and schedule.

• Test Design and Review: develop and review the test cases
and test suites that align with the test plan and the require-
ments of the software application.

• Test Case Preparation: the actual test cases are prepared
based on the designs created in the previous stage.

• Test Execution: execute the tests that were designed in the
previous stage. The software system is executed with the
test cases and the results are recorded.

• Test Reporting: analyze the results of the tests and generate
reports that summarize the testing process and identify any
defects or issues that were discovered.

• Bug Fixing and Regression Testing: defects or issues iden-
tified during testing are reported to the development team
for fixing. Once the defects are fixed, regression testing is
performed to ensure that the changes have not introduced
new defects or issues.

• Software Release: once the software system has passed all
of the testing stages and the defects have been fixed, the
software can be released to the customer or end user.

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/LLM-Testing/LLM4SoftwareTesting
https://github.com/LLM-Testing/LLM4SoftwareTesting

914 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Fig. 2. Overview of the paper collection process.

The testing process is iterative and may involve multiple
cycles of the above stages, depending on the complexity of the
software system and the testing requirements.

During the testing phase, various types of tests may be per-
formed, including unit tests, integration tests, system tests, and
acceptance tests.

• Unit Testing involves testing individual units or compo-
nents of the software application to ensure that they func-
tion correctly.

• Integration Testing involves testing different modules or
components of the software application together to ensure
that they work correctly as a system.

• System Testing involves testing the entire software system
as a whole, including all the integrated components and
external dependencies.

• Acceptance Testing involves testing the software applica-
tion to ensure that it meets the business requirements and
is ready for deployment.

In addition, there can be functional testing, performance
testing, unit testing, security testing, accessibility testing,
etc, which explores various aspects of the software under
test [1].

III. PAPER SELECTION AND REVIEW SCHEMA

A. Paper Collection Methodology

Fig. 2 shows our paper search and selection process. To
collect as much relevant literature as possible, we use both
automatic search (from paper repository database) and manual
search (from major software engineering and artificial intelli-
gence venues). We searched papers from Jan. 2019 to Jun. 2023
and further conducted the second round of search to include the
papers from Jul. 2023 to Oct. 2023.

1) Automatic Search: To ensure that we collect papers from
diverse research areas, we conduct an extensive search using
four popular scientific databases: ACM digital library, IEEE
Xplore digital library, arXiv, and DBLP.

We search for papers whose title contains keywords related
to software testing tasks and testing techniques (as shown
below) in the first three databases. In the case of DBLP, we
use additional keywords related to LLMs (as shown below)
to filter out irrelevant studies, as relying solely on testing-
related keywords would result in a large number of candidate
studies. While using two sets of keywords for DBLP may result
in overlooking certain related studies, we believe it is still a
feasible strategy. This is due to the fact that a substantial number
of studies present in this database can already be found in the

first three databases, and the fourth database only serves as a
supplementary source for collecting additional papers.

• Keywords related with software testing tasks and tech-
niques: test OR bug OR issue OR defect OR fault OR error
OR failure OR crash OR debug OR debugger OR repair OR
fix OR assert OR verification OR validation OR fuzz OR
fuzzer OR mutation.

• Keywords related with LLMs: LLM OR language model
OR generative model OR large model OR GPT-3 OR Chat-
GPT OR GPT-4 OR LLaMA OR PaLM2 OR CodeT5
OR CodeX OR CodeGen OR Bard OR InstructGPT.
Note that, we only list the top ten most popular LLMs
(based on Google search), since they are the search key-
words for matching paper titles, rather than matching the
paper content.

The above search strategy based on the paper title can recall
a large number of papers, and we further conduct the automatic
filtering based on the paper content. Specifically, we filter the
paper whose content contains “LLM” or “language model” or
“generative model” or “large model” or the name of the LLMs
(using the LLMs in [17], [24] except those in our exclusion
criteria). This can help eliminate the papers that do not involve
the neural models.

2) Manual Search: To compensate for the potential omis-
sions that may result from automated searches, we also con-
duct manual searches. In order to make sure we collect highly
relevant papers, we conduct a manual search within the con-
ference proceedings and journal articles from top-tier software
engineering venues (listed in Table II).

In addition, given the interdisciplinary nature of this work,
we also include the conference proceedings of the artificial
intelligence field. We select the top ten venues based on the h5
index from Google Scholar, and exclude three computer vision
venues, i.e., CVPR, ICCV, ECCV, as listed in Table II.

3) Inclusion and Exclusion Criteria: The search conducted
on the databases and venue is, by design, very inclusive. This
allows us to collect as many papers as possible in our pool.
However, this generous inclusivity results in having papers that
are not directly related to the scope of this survey. Accordingly,
we define a set of specific inclusion and exclusion criteria and
then we apply them to each paper in the pool and remove papers
not meeting the criteria. This ensures that each collected paper
aligns with our scope and research questions.

Inclusion Criteria. We define the following criteria for in-
cluding papers:

• The paper proposes or improves an approach, study, or
tool/framework that targets testing specific software or
systems with LLMs.

• The paper applies LLMs to software testing practice, in-
cluding all tasks within the software testing lifecycle as
demonstrated in Section II-B.

• The paper presents an empirical or experimental study
about utilizing LLMs in software testing practice.

• The paper involves specific testing techniques (e.g., fuzz
testing) employing LLMs.

If a paper satisfies any of the following criteria, we will
include it.

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 915

TABLE I
DETAILS OF THE COLLECTED PAPERS

ID Topic Paper title Year Reference

1 Unit test case generation Unit Test Case Generation with Transformers and Focal Context 2020 [25]
2 Unit test case generation Codet: Code Generation with Generated Tests 2022 [26]
3 Unit test case generation Interactive Code Generation via Test-Driven User-Intent Formalization 2022 [27]
4 Unit test case generation A3Test: Assertion-Augmented Automated Test Case Generation 2023 [28]
5 Unit test case generation An Empirical Evaluation of Using Large Language Models for Automated Unit Test Generation 2023 [29]
6 Unit test case generation An Initial Investigation of ChatGPT Unit Test Generation Capability 2023 [30]
7 Unit test case generation Automated Test Case Generation Using Code Models and Domain Adaptation 2023 [31]
8 Unit test case generation Automatic Generation of Test Cases based on Bug Reports: a Feasibility Study with Large Language Models 2023 [32]
9 Unit test case generation Can Large Language Models Write Good Property-Based Tests? 2023 [33]
10 Unit test case generation CAT-LM Training Language Models on Aligned Code And Tests 2023 [34]
11 Unit test case generation ChatGPT vs SBST: A Comparative Assessment of Unit Test Suite Generation 2023 [8]
12 Unit test case generation ChatUniTest: a ChatGPT-based Automated Unit Test Generation Tool 2023 [35]
13 Unit test case generation CODAMOSA: Escaping Coverage Plateaus in Test Generation with Pre-trained Large Language Models 2023 [36]
14 Unit test case generation Effective Test Generation Using Pre-trained Large Language Models and Mutation Testing 2023 [37]
15 Unit test case generation Exploring the Effectiveness of Large Language Models in Generating Unit Tests 2023 [38]
16 Unit test case generation How Well does LLM Generate Security Tests? 2023 [39]
17 Unit test case generation No More Manual Tests? Evaluating and Improving ChatGPT for Unit Test Generation 2023 [7]
18 Unit test case generation Prompting Code Interpreter to Write Better Unit Tests on Quixbugs Functions 2023 [40]
19 Unit test case generation Reinforcement Learning from Automatic Feedback for High-Quality Unit Test Generation 2023 [41]
20 Unit test case generation Unit Test Generation using Generative AI: A Comparative Performance Analysis of Autogeneration Tools 2023 [42]
21 Test oracle generation Generating Accurate Assert Statements for Unit Test Cases Using Pretrained Transformers 2022 [43]
22 Test oracle generation Learning Deep Semantics for Test Completion 2023 [44]
23 Test oracle generation; Program repair Using Transfer Learning for Code-Related Tasks 2023 [45]
24 Test oracle generation; Program repair Retrieval-Based Prompt Selection for Code-Related Few-Shot Learning 2023 [46]
25 System test input generation Automated Conformance Testing for JavaScript Engines via Deep Compiler Fuzzing 2021 [47]
26 System test input generation Fill in the Blank: Context-aware Automated Text Input Generation for Mobile GUI Testing 2022 [48]
27 System test input generation Large Language Models are Pretty Good Zero-Shot Video Game Bug Detectors 2022 [49]
28 System test input generation Slgpt: Using Transfer Learning to Directly Generate Simulink Model Files and Find Bugs in the Simulink Toolchain 2021 [50]
29 System test input generation Augmenting Greybox Fuzzing with Generative AI 2023 [51]
30 System test input generation Automated Test Case Generation Using T5 and GPT-3 2023 [52]
31 System test input generation Automating GUI-based Software Testing with GPT-3 2023 [53]
32 System test input generation AXNav: Replaying Accessibility Tests from Natural Language 2023 [54]
33 System test input generation Can ChatGPT Advance Software Testing Intelligence? An Experience Report on Metamorphic Testing 2023 [55]
34 System test input generation Efficient Mutation Testing via Pre-Trained Language Models 2023 [56]
35 System test input generation Large Language Models are Edge-Case Generators:Crafting Unusual Programs for Fuzzing Deep Learning Libraries 2023 [57]
36 System test input generation Large Language Models are Zero Shot Fuzzers: Fuzzing Deep Learning Libraries via Large Language Models 2023 [58]
37 System test input generation Large Language Models for Fuzzing Parsers (Registered Report) 2023 [59]
38 System test input generation LLM for Test Script Generation and Migration: Challenges, Capabilities, and Opportunities 2023 [60]
39 System test input generation Make LLM a Testing Expert: Bringing Human-like Interaction to Mobile GUI Testing via Functionality-aware Decisions 2023 [14]
40 System test input generation PentestGPT: An LLM-empowered Automatic Penetration Testing Tool 2023 [61]
41 System test input generation SMT Solver Validation Empowered by Large Pre-Trained Language Models 2023 [62]
42 System test input generation TARGET: Automated Scenario Generation from Traffic Rules for Testing Autonomous Vehicles 2023 [63]
43 System test input generation Testing the Limits: Unusual Text Inputs Generation for Mobile App Crash Detection with Large Language Model 2023 [64]
44 System test input generation Understanding Large Language Model Based Fuzz Driver Generation 2023 [65]
45 System test input generation Universal Fuzzing via Large Language Models 2023 [66]
46 System test input generation Variable Discovery with Large Language Models for Metamorphic Testing of Scientific Software 2023 [67]
47 System test input generation White-box Compiler Fuzzing Empowered by Large Language Models 2023 [68]
48 Bug analysis Itiger: an Automatic Issue Title Generation Tool 2022 [69]
49 Bug analysis CrashTranslator: Automatically Reproducing Mobile Application Crashes Directly from Stack Trace 2023 [70]
50 Bug analysis Cupid: Leveraging ChatGPT for More Accurate Duplicate Bug Report Detection 2023 [71]
51 Bug analysis Employing Deep Learning and Structured Information Retrieval to Answer Clarification Questions on Bug Reports 2023 [72]
52 Bug analysis Explaining Software Bugs Leveraging Code Structures in Neural Machine Translation 2022 [73]
53 Bug analysis Prompting Is All Your Need: Automated Android Bug Replay with Large Language Models 2023 [74]
54 Bug analysis Still Confusing for Bug-Component Triaging? Deep Feature Learning and Ensemble Setting to Rescue 2023 [75]
55 Debug Detect-Localize-Repair: A Unified Framework for Learning to Debug with CodeT5 2022 [76]
56 Debug Large Language Models are Few-shot Testers: Exploring LLM-based General Bug Reproduction 2022 [77]
57 Debug A Preliminary Evaluation of LLM-Based Fault Localization 2023 [78]
58 Debug Addressing Compiler Errors: Stack Overflow or Large Language Models? 2023 [79]
59 Debug Can LLMs Demystify Bug Reports? 2023 [80]
60 Debug Dcc –help: Generating Context-Aware Compiler Error Explanations with Large Language Models 2023 [81]
61 Debug Explainable Automated Debugging via Large Language Model-driven Scientific Debugging 2023 [82]
62 Debug Large Language Models for Test-Free Fault Localization 2023 [83]
63 Debug Large Language Models in Fault Localisation 2023 [84]
64 Debug LLM4CBI: Taming LLMs to Generate Effective Test Programs for Compiler Bug Isolation 2023 [85]
65 Debug Nuances are the Key: Unlocking ChatGPT to Find Failure-Inducing Tests with Differential Prompting 2023 [86]
66 Debug Teaching Large Language Models to Self-Debug 2023 [87]
67 Debug; Program repair A study on Prompt Design, Advantages and Limitations of ChatGPT for Deep Learning Program Repair 2023 [88]
68 Program repair Examining Zero-Shot Vulnerability Repair with Large Language Models 2022 [89]
69 Program repair Automated Repair of Programs from Large Language Models 2022 [90]
70 Program repair Fix Bugs with Transformer through a Neural-Symbolic Edit Grammar 2022 [91]
71 Program repair Practical Program Repair in the Era of Large Pre-trained Language Models 2022 [92]
72 Program repair Repairing Bugs in Python Assignments Using Large Language Models 2022 [93]
73 Program repair Towards JavaScript Program Repair with Generative Pre-trained Transformer (GPT-2) 2022 [94]
74 Program repair An Analysis of the Automatic Bug Fixing Performance of ChatGPT 2023 [95]
75 Program repair An Empirical Study on Fine-Tuning Large Language Models of Code for Automated Program Repair 2023 [96]
76 Program repair An Evaluation of the Effectiveness of OpenAI’s ChatGPT for Automated Python Program Bug Fixing using QuixBugs 2023 [97]
77 Program repair An Extensive Study on Model Architecture and Program Representation in the Domain of Learning-based Automated Program Repair 2023 [98]
78 Program repair Can OpenAI’s Codex Fix Bugs? An Evaluation on QuixBugs 2022 [99]
79 Program repair CIRCLE: Continual Repair Across Programming Languages 2022 [100]
80 Program repair Coffee: Boost Your Code LLMs by Fixing Bugs with Feedback 2023 [101]
81 Program repair Copiloting the Copilots: Fusing Large Language Models with Completion Engines for Automated Program Repair 2023 [102]
82 Program repair Domain Knowledge Matters: Improving Prompts with Fix Templates for Repairing Python Type Errors 2023 [103]
83 Program repair Enhancing Genetic Improvement Mutations Using Large Language Models 2023 [104]
84 Program repair FixEval: Execution-based Evaluation of Program Fixes for Programming Problems 2023 [105]
85 Program repair Fixing Hardware Security Bugs with Large Language Models 2023 [106]
86 Program repair Fixing Rust Compilation Errors using LLMs 2023 [107]
87 Program repair Framing Program Repair as Code Completion 2022 [108]
88 Program repair Frustrated with Code Quality Issues? LLMs can Help! 2023 [109]
89 Program repair GPT-3-Powered Type Error Debugging: Investigating the Use of Large Language Models for Code Repair 2023 [110]
90 Program repair How Effective Are Neural Networks for Fixing Security Vulnerabilities 2023 [111]
91 Program repair Impact of Code Language Models on Automated Program Repair 2023 [112]
92 Program repair Inferfix: End-to-end Program Repair with LLMs 2023 [113]
93 Program repair Keep the Conversation Going: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT 2023 [114]
94 Program repair Neural Program Repair with Program Dependence Analysis and Effective Filter Mechanism 2023 [115]
95 Program repair Out of Context: How important is Local Context in Neural Program Repair? 2023 [116]
96 Program repair Pre-trained Model-based Automated Software Vulnerability Repair: How Far are We? 2023 [117]
97 Program repair RAPGen: An Approach for Fixing Code Inefficiencies in Zero-Shot 2023 [118]
98 Program repair RAP-Gen: Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program Repair 2023 [119]
99 Program repair STEAM: Simulating the InTeractive BEhavior of ProgrAMmers for Automatic Bug Fixing 2023 [120]
100 Program repair Towards Generating Functionally Correct Code Edits from Natural Language Issue Descriptions 2023 [121]
101 Program repair VulRepair: a T5-based Automated Software Vulnerability Repair 2022 [122]
102 Program repair What Makes Good In-Context Demonstrations for Code Intelligence Tasks with LLMs? 2023 [123]

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

916 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

TABLE II
CONFERENCE PROCEEDINGS AND JOURNALS CONSIDERED FOR

MANUAL SEARCH

Acronym Venue

SE
C

on
fe

re
nc

e

ICSE International Conference on Software Engineering
ESEC/FSE Joint European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering
ASE International Conference on Automated Software Engineering
ISSTA International Symposium on Software Testing and Analysis
ICST International Conference on Software Testing, Verification and Validation
ESEM International Symposium on Empirical Software Engineering and Measurement
MSR International Conference on Mining Software Repositories
QRS International Conference on Software Quality, Reliability and Security
ICSME International Conference on Software Maintenance and Evolution
ISSRE International Symposium on Software Reliability Engineering

SE
Jo

ur
na

l

TSE Transactions on Software Engineering
TOSEM Transactions on Software Engineering and Methodology
EMSE Empirical Software Engineering
ASE Automated Software Engineering
JSS Journal of Systems and Software
JSEP Journal of Software: Evolution and Process
STVR Software Testing, Verification and Reliability
IEEE SOFTW. IEEE Software
IET SOFTW. IET Software
IST Information and Software Technology
SQJ Software Quality Journal

A
I

V
en

ue
s

ICLR International Conference on Learning Representations
NeurIPS Conference on Neural Information Processing Systems
ICML International Conference on Machine Learning
AAAI AAAI Conference on Artificial Intelligence
EMNLP Conference on Empirical Methods in Natural Language Processing
ACL Annual Meeting of the Association for Computational Linguistics
IJCAI International Joint Conference on Artificial Intelligence

Exclusion Criteria. The following studies would be ex-
cluded during study selection:

• The paper does not involve software testing tasks, e.g.,
code comment generation.

• The paper does not utilize LLMs, e.g., using recurrent
neural networks.

• The paper mentions LLMs only in future work or discus-
sions rather than using LLMs in the approach.

• The paper utilizes language models with encoder-only ar-
chitecture, e.g., BERT, which can not directly be utilized
for generation tasks (as demonstrated in Section II-A).

• The paper focuses on testing the performance of LLMs,
such as fairness, stability, security, etc. [124], [125], [126].

• The paper focuses on evaluating the performance of LLM-
enabled tools, e.g., evaluating the code quality of the code
generation tool Copilot [127], [128], [129].

For the papers collected through automatic search and man-
ual search, we conduct a manual inspection to check whether
they satisfy our inclusion criteria and filter those following
our exclusion criteria. Specifically, the first two authors read
each paper to carefully determine whether it should be included
based on the inclusion criteria and exclusion criteria, and any
paper with different decisions will be handed over to the third
author to make the final decision.

4) Quality Assessment: In addition, we establish quality as-
sessment criteria to exclude low-quality studies as shown below.
For each question, the study’s quality is rated as “yes”, “partial”
or “no” which are assigned values of 1, 0.5, and 0, respectively.
Papers with a score of less than eight will be excluded from
our study.

• Is there a clearly stated research goal related to software
testing?

• Is there a defined and repeatable technique?
• Is there any explicit contribution to software testing?

• Is there an explicit description of which LLMs
are utilized?

• Is there an explicit explanation about how the LLMs
are utilized?

• Is there a clear methodology for validating the technique?
• Are the subject projects selected for validation suitable for

the research goals?
• Are there control techniques or baselines to demonstrate

the effectiveness of the proposed technique?
• Are the evaluation metrics relevant (e.g., evaluate the ef-

fectiveness of the proposed technique) to the research
objectives?

• Do the results presented in the study align with the re-
search objectives and are they presented in a clear and
relevant manner?

5) Snowballing: At the end of searching database reposi-
tories and conference proceedings and journals, and applying
inclusion/exclusion criteria and quality assessment, we obtain
the initial set of papers. Next, to mitigate the risk of omitting
relevant literature from this survey, we also perform backward
snowballing [130] by inspecting the references cited by the
collected papers so far. Note that, this procedure did not include
new studies, which might because the surveyed topic is quite
new and the reference studies tend to published previously, and
we already include a relatively comprehensive automatic and
manual search.

B. Collection Results

As shown in Fig. 2, the collection process started with a
total of 14,623 papers retrieved from four academic databases
employing keyword searching. Then after automated filtering,
manual search, applying inclusion/exclusion criteria, and qual-
ity assessment, we finally collected a total of 102 papers involv-
ing software testing with LLMs. Table I shows the details of the
collected papers. Besides, we provide a more comprehensive
overview of these papers regarding the specific characteristics
(will be illustrated in Section IV and Section V) in the online
appendix of the paper.

Note that, there are two studies which are respectively the
extension of a previously published paper by the same authors
([46] and [131], [68] and [132]), and we only keep the extended
version to avoid duplicate.

C. General Overview of Collected Paper

Among the papers, 47% papers are published in software
engineering venues, among which 19 papers are from ICSE, 5
papers are from FSE, 5 papers are from ASE, and 3 papers are
from ISSTA. 2% papers are published in artificial intelligence
venues such as EMNLP and ICLR, and 5% papers are published
in program analysis or security venues like PLDI and S & P.
Besides, 46% of the papers have not yet been published via
peer-reviewed venues, i.e., they are disclosed on arXiv. This is
understandable because this field is emerging and many works
are just completed and in the process of submission. Although
these papers did not undergo peer review, we have a quality

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 917

Fig. 3. Trend in the number of papers with year.

assessment process that eliminates papers with low quality,
which potentially ensures the quality of this survey.

Fig. 3 demonstrates the trend of our collected papers per year.
We can see that as the years go by, the number of papers in this
field is growing almost exponentially. In 2020 and 2021, there
were only 1 and 2 papers, respectively. In 2022, there were 19
papers, and in 2023, there have been 82 papers. It is conceivable
that there will be even more papers in the future, which indicates
the popularity and attention that this field is receiving.

IV. ANALYSIS FROM SOFTWARE TESTING PERSPECTIVE

This section presents our analysis from the viewpoint of
software testing and organizes the collected studies in terms of
testing tasks. Fig. 4 lists the distribution of each involved testing
task, aligned with the software testing life cycle. We first pro-
vide a general overview of the distribution, followed by further
analysis for each task. Note that, for each following subsection,
the cumulative total of subcategories may not always match the
total number of papers since a paper might belong to more than
one subcategory.

We can see that LLMs have been effectively used in both
the mid to late stages of the software testing lifecycle. In the
test case preparation phase, LLMs have been utilized for tasks
such as generating unit test cases, test oracle generation, and
system test input generation. These tasks are crucial in the mid-
phase of software testing to help catch issues and prevent further
development until issues are resolved. Furthermore, in later
phases such as the test report/bug reports and bug fix phase,
LLMs have been employed for tasks such as bug analysis,
debugging, and repair. These tasks are critical towards the end
of the testing phase when software bugs need to be resolved to
prepare for the product’s release.

A. Unit Test Case Generation

Unit test case generation involves writing unit test cases to
check individual units/components of the software indepen-
dently and ensure that they work correctly. For a method under
test (i.e., often called the focal method), its corresponding unit
test consists of a test prefix and a test oracle. In particular,

the test prefix is typically a series of method invocation state-
ments or assignment statements, which aims at driving the focal
method to a testable state; and then the test oracle serves as the
specification to check whether the current behavior of the focal
method satisfies the expected one, e.g., the test assertion.

To alleviate manual efforts in writing unit tests, researchers
have proposed various techniques to facilitate automated unit
test generation. Traditional unit test generation techniques
leverage search-based [3], [4], constraint-based [5] or random-
based strategies [6] to generate a suite of unit tests with the
main goal of maximizing the coverage in the software under
test. Nevertheless, the coverage and the meaningfulness of the
generated tests are still far from satisfactory.

Since LLMs have demonstrated promising results in tasks
such as code generation, and given that both code generation
and unit test case generation involve generating source code,
recent research has extended the domain of code generation
to encompass unit test case generation. Despite initial suc-
cess, there are nuances that set unit test case generation apart
from general code generation, signaling the need for more
tailored approaches.

1) Pre-Training or Fine-Tuning LLMs for Unit Test Case
Generation: Due to the limitations of LLMs in their earlier
stages, a majority of the earlier published studies adopt this pre-
training or fine-tuning schema. Moreover, in some recent stud-
ies, this schema continues to be employed to increase the LLMs’
familiarity with domain knowledge. Alagarsamy et al. [28]
first pre-trained the LLM with the focal method and asserted
statements to enable the LLM to have a stronger foundation
knowledge of assertions, then fine-tuned the LLM for the test
case generation task where the objective is to learn the relation-
ship between the focal method and the corresponding test case.
Tufano et al. [25] utilized a similar schema by pre-training the
LLM on a large unsupervised Java corpus, and supervised fine-
tuning a downstream translation task for generating unit tests.
Hashtroudi et al. [31] leveraged the existing developer-written
tests for each project to generate a project-specific dataset for
domain adaptation when fine-tuning the LLM, which can fa-
cilitate generating human-readable unit tests. Rao et al. [34]
trained a GPT-style language model by utilizing a pre-training
signal that explicitly considers the mapping between code and
test files. Steenhoek et al. [41] utilizes reinforcement learning
to optimize models by providing rewards based on static quality
metrics that can be automatically computed for the generated
unit test cases.

2) Designing Effective Prompts for Unit Test Case Gener-
ation: The advancement of LLMs has allowed them to excel
at targeted tasks without pre-training or fine-tuning. Therefore
most later studies typically focus on how to design the prompt,
to make the LLM better at understanding the context and nu-
ances of this task. Xie et al. [35] generated unit test cases
by parsing the project, extracting essential information, and
creating an adaptive focal context that includes a focal method
and its dependencies within the pre-defined maximum prompt
token limit of the LLM, and incorporating these context into a
prompt to query the LLM. Dakhel et al. [37] introduced MuTAP
for improving the effectiveness of test cases generated by LLMs

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

918 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Fig. 4. Distribution of testing tasks with LLMs (aligned with software testing life cycle [1], [133], [134], the number in bracket indicates the number of
collected studies per task, and one paper might involve multiple tasks).

TABLE III
PERFORMANCE OF UNIT TEST CASE GENERATION

Dataset Correctness Coverage LLM Paper
5 Java projects from Defects4J 16.21% 5%-13% (line coverage) BART [25]
10 Jave projects 40% 89% (line coverage), 90% (branch coverage) ChatGPT [35]
CodeSearchNet 41% N/A ChatGPT [7]
HumanEval 78% 87% (line coverage), 92% (branch coverage) Codex [38]
SF110 2% 2% (line coverage), 1% (branch coverage) Codex [38]

Note that, [39] experiments with Codex, CodeGen, and ChatGPT, and the best performance was achieved by Codex.

in terms of revealing bugs by leveraging mutation testing. They
augment prompts with surviving mutants, as those mutants
highlight the limitations of test cases in detecting bugs. Zhang
et al. [39] generated security tests with vulnerable dependencies
with LLMs.

Yuan et al. [7] first performed an empirical study to eval-
uate ChatGPT’s capability of unit test generation with both a
quantitative analysis and a user study in terms of correctness,
sufficiency, readability, and usability. And results show that the
generated tests still suffer from correctness issues, including
diverse compilation errors and execution failures. They fur-
ther propose an approach that leveraged the ChatGPT itself to
improve the quality of its generated tests with an initial test
generator and an iterative test refiner. Specifically, the iterative
test refiner iteratively fixed the compilation errors in the tests
generated by the initial test generator, which follows a validate-
and-fix paradigm to prompt the LLM based on the compilation
error messages and additional code context. Guilherme et al.
[30] and Li et al. [40] respectively evaluated the quality of
the generated unit tests by LLM using different metrics and
different prompts.

3) Test Generation With Additional Documentation:
Vikram et al. [33] went a step further by investigating the
potential of using LLMs to generate property-based tests when
provided API documentation. They believe that the documen-
tation of an API method can assist the LLM in producing logic
to generate random inputs for that method and deriving mean-
ingful properties of the result to check. Instead of generating
unit tests from the source code, Plein et al. [32] generated the
tests based on user-written bug reports.

4) LLM and Search-Based Method for Unit Test Genera-
tion: The aforementioned studies utilize LLMs for the whole
unit test case generation task, while Lemieux et al. [36] focus on
a different direction, i.e., first letting the traditional search-based

software testing techniques (e.g., Pynguin [135]) in generating
unit test case until its coverage improvements stall, then asking
the LLM to provide the example test cases for under-covered
functions. These examples can help the original test generation
redirect its search to more useful areas of the search space.

Tang et al. [8] conducts a systematic comparison of test suites
generated by the LLM and the state-of-the-art search-based
software testing tool EvoSuite, by considering the correctness,
readability, code coverage, and bug detection capability. Simi-
larly, Bhatia [42] experimentally investigates the quality of unit
tests generated by LLM compared to a commonly-used test
generator Pynguin.

5) Performance of Unit Test Case Generation: Since the
aforementioned studies of unit test case generation are based
on different datasets, one can hardly derive a fair comparison
and we present the details in Table III to let the readers obtain
a general view. We can see that in the SF110 benchmark, all
three evaluated LLMs have quite low performance, i.e., 2%
coverage [38]. SF110 is an Evosuite (a search-based unit test
case generation technique) benchmark consisting of 111 open-
source Java projects retrieved from SourceForge, containing
23,886 classes, over 800,000 bytecode-level branches, and 6.6
million lines of code. The authors did not present detailed
reasons for the low performance which can be further explored
in the future.

B. Test Oracle Generation

A test oracle is a source of information about whether the
output of a software system (or program or function or method)
is correct or not [136]. Most of the collected studies in this
category target the test assertion generation, which is inside a
unit test case. Nevertheless, we opted to treat these studies as
separate sections to facilitate a more thorough analysis.

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 919

Test assertion, which is to indicate the potential issues in
the tested code, is an important aspect that can distinguish the
unit test cases from the regular code. This is why some studies
specifically focus on the generation of effective test assertions.
Actually, before using LLMs, researchers have proposed RNN-
based approaches that aim at learning from thousands of unit
test methods to generate meaningful assert statements [137], yet
only 17% of the generated asserts can exactly match with the
ground truth asserts. Subsequently, to improve the performance,
several researchers utilized the LLMs for this task.

Mastropaolo et al. [45], [131] pre-trained a T5 model on a
dataset composed of natural language English text and source
code. Then, it fine-tuned such a model by reusing datasets
used in four previous works that used deep learning techniques
(such as RNN as mentioned before) including test assertion
generation and program repair, etc. Results showed that the
extract match rate of the generated test assertion is 57%. Tufano
et al. [43] proposed a similar approach which separately pre-
trained the LLM with English corpus and code corpus, and then
fine-tuned it on the asserts dataset (with test methods, focal
methods, and asserts). This further improved the performance
to 62% of the exact match rate. Besides the syntax-level data
as previous studies, Nie et al. [45] fine-tuned the LLMs with
six kinds of code semantics data, including the execution result
(e.g., types of the local variables) and execution context (e.g.,
the last called method in the test method), which enabled LLMs
to learn to understand the code execution information. The exact
match rate is 17% (note that this paper is based on a different
dataset from all other studies mentioned under this topic).

The aforementioned studies utilized the pre-training and fine-
tuning schema when using LLMs, and with the increasingly
powerful capabilities of LLMs, they can perform well on spe-
cific tasks without these specialized pre-training or fine-tuning
datasets. Subsequently, Nashid et al. [47] utilized prompt engi-
neering for this task, and proposed a technique for prompt cre-
ation that automatically retrieves code demonstrations similar to
the task, based on embedding or frequency analysis. They also
present evaluations about the few-shot learning with various
numbers (e.g., zero-shot, one-shot, or n-shot) and forms (e.g.,
random vs. systematic, or with vs. without natural language
descriptions) of the prompts, to investigate its feasibility on test
assertion generation. With only a few relevant code demonstra-
tions, this approach can achieve an accuracy of 76% for exact
matches in test assertion generation, which is the state-of-the-
art performance for this task.

C. System Test Input Generation

This category encompasses the studies related to creating
test input of system testing for enabling the automation of
test execution. We employ three subsections to present the
analysis from three different orthogonal viewpoints, and each
of the collected studies may be analyzed in one or more of
these subsections.

The first subsection is input generation in terms of software
types. The generation of system-level test inputs for software
testing varies for specific types of software being tested. For

Fig. 5. Distribution of software under test.

example, for mobile applications, the test input generation re-
quires providing a diverse range of text inputs or operation
combinations (e.g., click a button, long press a list) [14], [49],
which is the key to testing the application’s functionality and
user interface; while for Deep Learning (DL) libraries, the test
input is a program which covers diversified DL APIs [58], [59].
This subsection will demonstrate how the LLMs are utilized to
generate inputs for different types of software.

The second subsection input generation in terms of testing
techniques. We have observed that certain approaches serve
as specific types of testing techniques. For example, dozens
of our collected studies specifically focus on using LLMs for
fuzz testing. Therefore, this subsection would provide an anal-
ysis of the collected studies in terms of testing techniques,
showcasing how the LLMs are employed to enhance traditional
testing techniques.

The third subsection input generation in terms of input and
output. While most of the collected studies take the source
code or the software itself as the input and directly output the
software’s test input, there are studies that utilize alternative
forms of input and output. This subsection would provide an
analysis of such studies, highlighting different approaches and
their input-output characteristics.

1) Input Generation in Terms of Software Types: Fig. 5
demonstrates the types of software under test in our collected
studies. It is evident that the most prominent category is mobile
apps, with five studies utilizing LLMs for testing, possibly due
to their prevalence and importance in today’s business and daily
life. Additionally, there are respectively two studies focusing
on testing deep learning libraries, compilers, and SMT solvers.
Moreover, LLM-based testing techniques have also been ap-
plied to domains such as cyber-physical systems, quantum
computing platforms, and more. This widespread adoption of
LLMs demonstrates their effectiveness in handling diverse test
inputs and enhancing testing activities across various software
domains. A detailed analysis is provided below.

a) Test input generation for mobile apps: For mobile app
testing, one difficulty is to generate the appropriate text inputs
to proceed to the next page, which remains a prominent obstacle
for testing coverage. Considering the diversity and semantic
requirement of valid inputs (e.g., flight departure, movie name),
traditional techniques with heuristic-based or constraint-based
techniques [10], [138] are far from generating meaningful text

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

920 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

input. Liu et al. [49] employ the LLM to intelligently generate
the semantic input text according to the GUI context. In detail,
their proposed QTypist automatically extracts the component
information related to the EditText for generating the prompts,
and then inputs the prompts into the LLM to generate the
input text.

Besides the text input, there are other forms of input for
mobile apps, i.e., operations like ‘click a button’ and ‘select
a list’. To fully test an app, it is required to cover more GUI
pages and conduct more meaningful exploration traces through
the GUI operations, yet existing studies with random-/rule-
based methods [9], [10], model-based methods [11], [12], and
learning-based methods [13] are unable to understand the se-
mantic information of the GUI page thus could not conduct
the trace planning effectively. Liu et al. [14] formulates the test
input generation of mobile GUI testing problem as a Q & A
task, which asks LLM to chat with the mobile apps by passing
the GUI page information to LLM to elicit testing scripts (i.e.,
GUI operation), and executing them to keep passing the app
feedback to LLM, iterating the whole process. The proposed
GPTDroid extracts the static context of the GUI page and the
dynamic context of the iterative testing process, and designs
prompts for inputting this information to LLM which enables
the LLM to better understand the GUI page as well as the whole
testing process. It also introduces a functionality-aware memory
prompting mechanism that equips the LLM with the ability to
retain testing knowledge of the whole process and conduct long-
term, functionality-based reasoning to guide exploration. Sim-
ilarly, Zimmermann et al. utilize the LLM to interpret natural
language test cases and programmatically navigate through the
application under test [54].

Yu et al. [61] investigate the LLM’s capabilities in the mo-
bile app test script generation and migration task, including
the scenario-based test generation, and the cross-platform/app
test migration.

b) Test input generation for DL libraries: The input
for testing DL libraries is DL programs, and the difficulty in
generating the diversified input DL programs is that they need to
satisfy both the input language (e.g., Python) syntax/semantics
and the API input/shape constraints for tensor computations.
Traditional techniques with API-level fuzzing [139], [140] or
model-level fuzzing [141], [142] suffer from the following limi-
tations: 1) lack of diverse API sequence thus cannot reveal bugs
caused by chained API sequences; 2) cannot generate arbitrary
code thus cannot explore the huge search space that exists when
using the DL libraries. Since LLMs can include numerous code
snippets invoking DL library APIs in their training corpora, they
can implicitly learn both language syntax/semantics and intri-
cate API constraints for valid DL program generation. Taken in
this sense, Deng et al. [59] used both generative and infilling
LLMs to generate and mutate valid/diverse input DL programs
for fuzzing DL libraries. In detail, it first uses a generative
LLM (CodeX) to generate a set of seed programs (i.e., code
snippets that use the target DL APIs). Then it replaces part of
the seed program with masked tokens using different mutation
operators and leverages the ability of infilling LLM (InCoder)
to perform code infilling to generate new code that replaces the

masked tokens. Their follow-up study [58] goes a step further
to prime LLMs to synthesize unusual programs for the fuzzing
DL libraries. It is built on the well-known hypothesis that
historical bug-triggering programs may include rare/valuable
code ingredients important for bug finding and show improved
bug detection performance.

c) Test input generation for other types of software:
There are also dozens of studies that address testing tasks in
various other domains, due to space limitations, we will present
a selection of representative studies in these domains.

Finding bugs in a commercial cyber-physical system (CPS)
development tool such as Simulink is even more challenging.
Given the complexity of the Simulink language, generating
valid Simulink model files for testing is an ambitious task
for traditional machine learning or deep learning techniques.
Shrestha et al. [51] employs a small set of Simulink-specific
training data to fine-tune the LLM for generating Simulink
models. Results show that it can create Simulink models quite
similar to the open-source models, and can find a super-set of
the bugs traditional fuzzing approaches found.

Sun et al. [63] utilize LLM to generate test formulas for
fuzzing SMT solvers. It retrains the LLMs on a large corpus of
SMT formulas to enable them to acquire SMT-specific domain
knowledge. Then it further fine-tunes the LLMs on historical
bug-triggering formulas, which are known to involve struc-
tures that are more likely to trigger bugs and solver-specific
behaviors. The LLM-based compiler fuzzer proposed by Yang
et al. [69] adopts a dual-model framework: (1) an analysis LLM
examines the low-level optimization source code and produces
requirements on the high-level test programs that can trigger
the optimization; (2) a generation LLM produces test programs
based on the summarized requirements. Ye et al. [48] utilize
the LLM for generating the JavaScript programs and then use
the well-structured ECMAScript specifications to automatically
generate test data along with the test programs, after that they
apply differential testing to expose bugs.

2) Input Generation in Terms of Testing Techniques: By
utilizing system test inputs generated by LLMs, the collected
studies aim to enhance traditional testing techniques and make
them more effective. Among these techniques, fuzz testing is
the most commonly involved one. Fuzz testing, as a general
concept, revolves around generating invalid, unexpected, or
random data as inputs to evaluate the behavior of software.
LLMs play a crucial role in improving traditional fuzz test-
ing by facilitating the generation of diverse and realistic input
data. This enables fuzz testing to uncover potential bugs in the
software by subjecting it to a wide range of input scenarios.
In addition to fuzz testing, LLMs also contribute to enhancing
other testing techniques, which will be discussed in detail later.

a) Universal fuzzing framework: Xia et al. [67] present
Fuzz4All that can target many different input languages and
many different features of these languages. The key idea behind
it is to leverage LLMs as an input generation and mutation
engine, which enables the approach to produce diverse and real-
istic inputs for any practically relevant language. To realize this
potential, they present a novel auto-prompting technique, which
creates LLM prompts that are well-suited for fuzzing, and a

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 921

novel LLM-powered fuzzing loop, which iteratively updates the
prompt to create new fuzzing inputs. They experiment with six
different languages (C, C++, Go, SMT2, Java and Python) as
inputs and demonstrate higher coverage than existing language-
specific fuzzers. Hu et al. [52] propose a greybox fuzzer aug-
mented by the LLM, which picks a seed in the fuzzer’s seed pool
and prompts the LLM to produce the mutated seeds that might
trigger a new code region of the software. They experiment with
three categories of input formats, i.e., formatted data files (e.g.,
json, xml), source code in different programming languages
(e.g., JS, SQL, C), text with no explicit syntax rules (e.g., HTTP
response, md5 checksum). In addition, effective fuzzing relies
on the effective fuzz driver, and Zhang et al. [66] utilize LLMs
on the fuzz driver generation, in which five query strategies are
designed and analyzed from basic to enhanced.

b) Fuzzing techniques for specific software: There are
studies that focus on the fuzzing techniques tailored to specific
software, e.g., the deep learning library [58], [59], compiler
[69], SMT solvers [63], input widget of mobile app [65], cyber-
physical system [51], etc. One key focus of these fuzzing
techniques is to generate diverse test inputs so as to achieve
higher coverage. This is commonly achieved by combining the
mutation technique with LLM-based generation, where the for-
mer produces various candidates while the latter is responsible
for generating the executable test inputs [59], [63]. Another
focus of these fuzzing techniques is to generate the risky test
inputs that can trigger bugs earlier. To achieve this, a common
practice is to collect the historical bug-triggering programs to
fine-tune the LLM [63] or treat them as the demonstrations
when querying the LLM [58], [65].

c) Other testing techniques: There are studies that utilize
LLMs for enhancing GUI testing for generating meaningful text
input [49] and functionality-oriented exploration traces [14],
which has been introduced in Test input generation for mobile
apps part of Section IV-C1.

Besides, Deng et al. [62] leverage the LLMs to carry out
penetration testing tasks automatically. It involves setting a
penetration testing goal for the LLM, soliciting it for the ap-
propriate operation to execute, implementing it in the testing
environment, and feeding the test outputs back to the LLM for
next-step reasoning.

3) Input Generation in Terms of Input and Output:
a) Output format of test generation: Although most

works use LLM to generate test cases directly, there are also
some works generating indirect inputs like testing code, test
scenarios, metamorphic relations, etc. Liu et al. [65] propose
InputBlaster which leverages the LLM to automatically gen-
erate unusual text inputs for fuzzing the text input widgets
in mobile apps. It formulates the unusual inputs generation
problem as a task of producing a set of test generators, each
of which can yield a batch of unusual text inputs under the
same mutation rule. In detail, InputBlaster leverages LLM to
produce the test generators together with the mutation rules
serving as the reasoning chain and utilizes the in-context learn-
ing schema to demonstrate the LLM with examples for boosting
the performance. Deng et al. [64] use LLM to extract key infor-
mation related to the test scenario from a traffic rule, and rep-
resent the extracted information in a test scenario schema, then

synthesize the corresponding scenario scripts to construct the
test scenario. Luu et al. [56] examine the effectiveness of LLM
in generating metamorphic relations (MRs) for metamorphic
testing. Their results show that ChatGPT can be used to advance
software testing intelligence by proposing MRs candidates that
can be later adapted for implementing tests, but human intelli-
gence should still inevitably be involved to justify and rectify
their correctness.

b) Input format of test generation: The aforementioned
studies primarily take the source code or the software as the
input of LLM, yet there are also studies that take natural lan-
guage description as the input for test generation. Mathur et al.
[53] propose to generate test cases from the natural language
described requirements. Ackerman et al. [60] generate the in-
stances from natural language described requirements recur-
sively to serve as the seed examples for a mutation fuzzer.

D. Bug Analysis

This category involves analyzing and categorizing the iden-
tified software bugs to enhance understanding of the bug, and
facilitate subsequent debug and bug repair. Mukherjee et al. [73]
generate relevant answers to follow-up questions for deficient
bug reports to facilitate bug triage. Su et al. [76] transform the
bug-component triaging into a multi-classification task and a
generation task with LLM, then ensemble the prediction results
from them to improve the performance of bug-component triag-
ing further. Zhang et al. [72] first leverage the LLM under the
zero-shot setting to get essential information on bug reports,
then use the essential information as the input to detect duplicate
bug reports. Mahbub et al. [74] proposes to explain software
bugs with LLM, which generates natural language explanations
for software bugs by learning from a large corpus of bug-fix
commits. Zhang et al. [70] target to automatically generate the
bug title from the descriptions of the bug, which aims to help
developers write issue titles and facilitate the bug triaging and
follow-up fixing process.

E. Debug

This category refers to the process of identifying and locating
the cause of a software problem (i.e., bug). It involves analyzing
the code, tracing the execution flow, collecting error informa-
tion to understand the root cause of the issue, and fixing the
issue. Some studies concentrate on the comprehensive debug
process, while others delve into specific sub-activities within
the process.

1) Overall Debug Framework: Bui et al. [77] proposes a
unified Detect-Localize-Repair framework based on the LLM
for debugging, which first determines whether a given code
snippet is buggy or not, then identifies the buggy lines, and
translates the buggy code to its fixed version. Kang et al. [83]
proposes automated scientific debugging, a technique that given
buggy code and a bug-revealing test, prompts LLMs to automat-
ically generate hypotheses, uses debuggers to actively interact
with buggy code, and thus automatically reaches conclusions
prior to patch generation. Chen et al. [88] demonstrate that
self-debugging can teach the LLM to perform rubber duck

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

922 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

debugging; i.e., without any human feedback on the code cor-
rectness or error messages, the model is able to identify its
mistakes by investigating the execution results and explaining
the generated code in natural language. Cao et al. [89] conducts
a study of LLM’s debugging ability for deep learning programs,
including fault detection, fault localization and program repair.

2) Bug Localization: Wu et al. [85] compare the two
LLMs (ChatGPT and GPT-4) with the existing fault localization
techniques, and investigate the consistency of LLMs in fault
localization, as well as how prompt engineering and the length
of code context affect the results. Kang et al. [79] propose
AutoFL, an automated fault localization technique that only
requires a single failing test, and during its fault localization
process, it also generates an explanation about why the given
test fails. Yang et al. [84] propose LLMAO to overcome the
left-to-right nature of LLMs by fine-tuning a small set of bidi-
rectional adapter layers on top of the representations learned
by LLMs, which can locate buggy lines of code without any
test coverage information. Tu et al. [86] propose LLM4CBI
to tame LLMs to generate effective test programs for finding
suspicious files.

3) Bug Reproduction: There are also studies focusing on a
sub-phase of the debugging process. For example, Kang et al.
[78] and Plein et al. [81] respectively propose the framework
to harness the LLM to reproduce bugs, and suggest bug repro-
ducing test cases to the developer for facilitating debugging.
Li et al. [87] focus on a similar aspect of finding the failure-
inducing test cases whose test input can trigger the software’s
fault. It synergistically combines LLM and differential testing
to do that.

There are also studies focusing on the bug reproduction of
mobile apps to produce the replay script. Feng et al. [75] pro-
pose AdbGPT, a new lightweight approach to automatically re-
produce the bugs from bug reports through prompt engineering,
without any training and hard-coding effort. It leverages few-
shot learning and chain-of-thought reasoning to elicit human
knowledge and logical reasoning from LLMs to accomplish the
bug replay in a manner similar to a developer. Huang et al.
[71] propose CrashTranslator to automatically reproduce bugs
directly from the stack trace. It accomplishes this by leveraging
the LLM to predict the exploration steps for triggering the
crash, and designing a reinforcement learning based technique
to mitigate the inaccurate prediction and guide the search holis-
tically. Taeb et al. [55] convert the manual accessibility test
instructions into replayable, navigable videos by using LLM
and UI element detection models, which can also help reveal
accessibility issues.

4) Error Explanation: Taylor et al. [82] integrates the LLM
into the Debugging C Compiler to generate unique, novice-
focused explanations tailored to each error. Widjojo et al. [80]
study the effectiveness of Stack Overflow and LLMs at explain-
ing compiler errors.

F. Program Repair

This category denotes the task of fixing the identified soft-
ware bugs. The high frequency of repair-related studies can be

attributed to the close relationship between this task and the
source code. With their advanced natural language processing
and understanding capabilities, LLM are well-equipped to pro-
cess and analyze source code, making them an ideal tool for
performing code-related tasks such as fixing bugs.

There have been template-based [143], heuristic-based [144],
and constraint-based [145], [146] automatic program repair
techniques. And with the development of deep learning tech-
niques in the past few years, there have been several studies
employing deep learning techniques for program repair. They
typically adopt deep learning models to take a buggy software
program as input and generate a patched program. Based on
the training data, they would build a neural network model that
learns the relations between the buggy code and the correspond-
ing fixed code. Nevertheless, these techniques still fail to fix
a large portion of bugs, and they typically have to generate
hundreds to thousands of candidate patches and take hours to
validate these patches to fix enough bugs. Furthermore, the deep
learning based program repair models need to be trained with
huge amounts of labeled training data (typically pairs of buggy
and fixed code), which is time- and effort-consuming to col-
lect the high-quality dataset. Subsequently, with the popularity
and demonstrated capability of the LLMs, researchers begin to
explore the LLMs for program repair.

1) Patch Single-Line Bugs: In the early era of program
repair, the focus was mainly on addressing defects related to
single-line code errors, which are relatively simple and did not
require the repair of complex program logic. Lajkó et al. [95]
propose to fine-tune the LLM with JavaScript code snippets to
serve as the purpose for the JavaScript program repair. Zhang
et al. [116] employs program slicing to extract contextual infor-
mation directly related to the given buggy statement as repair
ingredients from the corresponding program dependence graph,
which makes the fine-tuning more focused on the buggy code.
Zhang et al. [121] propose a stage-wise framework STEAM
for patching single-line bugs, which simulates the interactive
behavior of multiple programmers involved in bug manage-
ment, e.g., bug reporting, bug diagnosis, patch generation, and
patch verification.

Since most real-world bugs would involve multiple lines of
code, and later studies explore these more complex situations
(although some of them can also patch the single-line bugs).

2) Patch Multiple-Lines Bugs: The studies in this category
would input a buggy function to the LLM, and the goal is
to output the patched function, which might involve complex
semantic understanding, code hunk modification, as well as
program refactoring. Earlier studies typically employ the fine-
tuning strategy to enable the LLM to better understand the code
semantics. Fu et al. [123] fine-tune the LLM by employing BPE
tokenization to handle Out-Of-Vocabulary (OOV) issues which
makes the approach generate new tokens that never appear
in a training function but are newly introduced in the repair.
Wang et al. [120] train the LLM based on both buggy input
and retrieved bug-fix examples which are retrieved in terms
of the lexical and semantical similarities. The aforementioned
studies (including the ones in patching single-line bugs) would
predict the fixed programs directly, and Hu et al. [92] utilize

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 923

TABLE IV
PERFORMANCE OF PROGRAM REPAIR

Dataset % Correct patches LLM Paper
Defects4J v1.2, Defects4J
v2.0, QuixBugs,
HumanEval-Java

22/40 Jave bugs (QuixBugs dataset, with InCoder-6B, correct code
infilling setting)

PLBART, CodeT5, CodeGen, In-
Coder (each with variant parame-
ters, 10 LLMs in total)

[112]

QuixBugs 23/40 Python bugs, 14/40 Java bugs (complete function generation
setting)

Codex-12B [99]

Defects4J v1.2, Defects4J
v2.0, QuixBugs, ManyBugs

39/40 Python bugs, 34/40 Java bugs (QuixBugs dataset, with Codex-
12B, correct code infilling setting); 37/40 Python bugs, 32/40 Java bugs
(QuixBugs dataset, with Codex-12B, complete function generation
setting)

Codex, GPT-Neo, CodeT5, In-
Coder (each with variant parame-
ters, 9 LLMs in total)

[92]

QuixBugs 31/40 Python bugs (completion function generation setting) ChatGPT-175B [95]
DL programs from Stack-
Overflow

16/72 Python bugs (complete function generation setting) ChatGPT-175B [89]

Note that, for studies with multiple datasets or LLMs, we only present the best performance or in the most commonly utilized dataset.

a different setup that predicts the scripts that can fix the bugs
when executed with the delete and insert grammar. For example,
it predicts whether an original line of code should be deleted,
and what content should be inserted.

Nevertheless, fine-tuning may face limitations in terms of
its reliance on abundant high-quality labeled data, significant
computational resources, and the possibility of overfitting. To
approach the program repair problem more effectively, later
studies focus on how to design an effective prompt for program
repair. Several studies empirically investigate the effectiveness
of prompt variants of the latest LLMs for program repair un-
der different repair settings and commonly-used benchmarks
(which will be explored in depth later), while other studies
focus on proposing new techniques. Ribeiro et al. [109] take
advantage of LLM to conduct the code completion in a buggy
line for patch generation, and elaborate on how to circumvent
the open-ended nature of code generation to appropriately fit the
new code in the original program. Xia et al. [115] propose the
conversation-driven program repair approach that interleaves
patch generation with instant feedback to perform the repair in
a conversational style. They first feed the LLM with relevant
test failure information to start with, and then learns from both
failures and successes of earlier patching attempts of the same
bug for more powerful repair. For earlier patches that failed
to pass all tests, they combine the incorrect patches with their
corresponding relevant test failure information to construct a
new prompt for the LLM to generate the next patch, in order
to avoid making the same mistakes. For earlier patches that
passed all the tests (i.e., plausible patches), they further ask the
LLM to generate alternative variations of the original plausi-
ble patches. This can further build on and learn from earlier
successes to generate more plausible patches to increase the
chance of having correct patches. Zhang et al. [94] propose
a similar approach design by leveraging multimodal prompts
(e.g., natural language description, error message, input-output-
based test cases), iterative querying, test-case-based few-shot
selection to produce repairs. Moon et al. [102] propose for bug
fixing with feedback. It consists of a critic model to generate
feedback, an editor to edit codes based on the feedback, and
a feedback selector to choose the best possible feedback from
the critic.

Wei et al. [103] propose Repilot to copilot the AI “copilots”
(i.e., LLMs) by synthesizing more valid patches during the
repair process. Its key insight is that many LLMs produce out-
puts autoregressively (i.e., token by token), and by resembling
human writing programs, the repair can be significantly boosted
and guided through a completion engine. Brownlee et al. [105]
propose to use the LLM as mutation operators for the search-
based techniques of program repair.

3) Repair With Static Code Analyzer: Most of the program
repair studies would suppose the bug has been detected, while
Jin et al. [114] propose a program repair framework paired with
a static analyzer to first detect the bugs, and then fix them.
In detail, the static analyzer first detects an error (e.g., null
pointer dereference) and the context information provided by
the static analyzer will be sent into the LLM for querying the
patch for this specific error. Wadhwa et al. [110] focus on a
similar task, and additionally employ an LLM as the ranker to
assess the likelihood of acceptance of generated patches which
can effectively catch plausible but incorrect fixes and reduce
developer burden.

4) Repair for Specific Bugs: The aforementioned studies all
consider the buggy code as the input for the automatic program
repair, while other studies conduct program repairing in terms
of other types of bug descriptions, specific types of bugs, etc.
Fakhoury et al. [122] focus on program repair from natural
language issue descriptions, i.e., generating the patch with the
bug and fix-related information described in the issue reports.
Garg et al. [119] aim at repairing performance issues, in which
they first retrieve a prompt instruction from a pre-constructed
knowledge-base of previous performance bug fixes and then
generate a repair prompt using the retrieved instruction. There
are studies focusing on the bug fixing of Rust programs
[108] or OCaml programs (an industrial-strength programming
language) [111].

5) Empirical Study About Program Repair: There are
several studies related to the empirical or experimental eval-
uation of the various LLMs on program repair, and we sum-
marize the performance in Table IV. Jiang et al. [113], Xia
et al. [93], and Zhang et al. [118] respectively conduct com-
prehensive experimental evaluations with various LLMs and
on different automated program repair benchmarks, while other

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

924 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

researchers [89], [96], [98], [100] focus on a specific LLM and
on one dataset, e.g., QuixBugs. In addition, Gao et al. [124]
empirically investigate the impact of in-context demonstrations
for bug fixing, including the selection, order, and number of
demonstration examples. Prenner et al. [117] empirically study
how the local context (i.e., code that comes before or after
the bug location) affects the repair performance. Horváth et al.
[99] empirically study the impact of program representation and
model architecture on the repair performance.

There are two commonly-used repair settings when using
LLMs to generate patches: 1) complete function generation
(i.e., generating the entire patch function), 2) correct code in-
filling (i.e., filling in a chunk of code given the prefix and
suffix), and different studies might utilize different settings
which are marked in Table IV. The commonly-used datasets
are QuixBugs, Defects4J, etc. These datasets only involve the
fundamental functionalities such as sorting algorithms, each
program’s average number of lines ranging from 13 to 22,
implementing one functionality, and involving few dependen-
cies. To tackle this, Cao et al. [89] conducts an empirical
study on a more complex dataset with DL programs collected
from StackOverflow. Every program contains about 46 lines of
code on average, implementing several functionalities including
data preprocessing, DL model construction, model training, and
evaluation. And the dataset involves more than 6 dependencies
for each program, including TensorFlow, Keras, and Pytorch.
Their results demonstrate a much lower rate of correct patches
than in other datasets, which again reveals the potential dif-
ficulty of this task. Similarly, Haque et al. [106] introduce a
dataset comprising of buggy code submissions and their corre-
sponding fixes collected from online judge platforms, in which
it offers an extensive collection of unit tests to enable the
evaluations about the correctness of fixes and further informa-
tion regarding time, memory constraints, and acceptance based
on a verdict.

V. ANALYSIS FROM LLM PERSPECTIVE

This section discusses the analysis based on the viewpoints of
LLM, specifically, it’s unfolded from the viewpoints of utilized
LLMs, types of prompt engineering, input of the LLMs, as well
as the accompanied techniques when utilizing LLM.

A. LLM Models

As shown in Fig. 6, the most commonly utilized LLM in
software testing tasks is ChatGPT, which was released on Nov.
2022 by OpenAI. It is trained on a large corpus of natural
language text data, and primarily designed for natural language
processing and conversation. ChatGPT is the most widely rec-
ognized and popular LLM up until now, known for its excep-
tional performance across various tasks. Therefore, it comes
as no surprise that it ranks in the top position in terms of our
collected studies.

Codex, an LLM based on GPT-3, is the second most com-
monly used LLM in our collected studies. It is trained on
a massive code corpus containing examples from many pro-
gramming languages such as JavaScript, Python, C/C++, and
Java. Codex was released on Sep. 2021 by OpenAI and powers

Fig. 6. LLMs used in the collected papers.

GitHub Copilot– an AI pair programmer that generates whole
code snippets, given a natural language description as a prompt.
Since a large portion of our collected studies involve the source
code (e.g., repair, unit test case generation), it is not surprising
that researchers choose Codex as the LLM in assisting them in
accomplishing the coding-related tasks.

The third-ranked LLM is CodeT5, which is an open-sourced
LLM developed by salesforce3. Thanks to its open source,
researchers can easily conduct the pre-training and fine-tuning
with domain-specific data to achieve better performance. Sim-
ilarly, CodeGen is also open-sourced and ranked relatively
higher. Besides, for CodeT5 and CodeGen, there are more than
half of the related studies involve the empirical evaluations
(which employ multiple LLMs), e.g., program repair [112],
[113], unit test case generation [39].

There are already 14 studies that utilize GPT-4, ranking at
the fourth place, which is launched on March 2023. Several
studies directly utilize this state-of-the-art LLM of OpenAI,
since it demonstrates excellent performance across a wide range
of generation and reasoning tasks. For example, Xie et al. utilize
GPT-4 to generate fuzzing inputs [67], while Vikram et al.
employ it to generate property-based tests with the assistance
of API documentation [34]. In addition, some studies conduct
experiments using both GPT-4 and ChatGPT or other LLMs to
provide a more comprehensive evaluation of these models’ per-
formance. In their proposed LLM-empowered automatic pene-
tration testing technique, Deng et al. find that GPT-4 surpasses
ChatGPT and LaMDA from Google [62]. Similarly, Zhang
et al. find that GPT-4 shows its performance superiority over
ChatGPT when generating the fuzz drivers with both the basic
query strategies and enhanced query strategies [66]. Further-
more, GPT-4, as a multi-modal LLM, sets itself apart from the
other mentioned LLMs by showcasing additional capabilities
such as generating image narratives and answering questions
based on images [147]. Yet we have not come across any studies
that explore the utilization of GPT-4’s image-related features

3https://blog.salesforceairesearch.com/codet5/

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

https://blog.salesforceairesearch.com/codet5/

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 925

Fig. 7. Distribution about how LLM is used (Note that, a study can involve multiple types of prompt engineering).

(e.g., UI screenshots, programming screencasts) in software
testing tasks.

B. Types of Prompt Engineering

As shown in Fig. 7, among our collected studies, 38 studies
utilize the LLMs through pre-training or fine-tuning schema,
while 64 studies employ the prompt engineering to commu-
nicate with LLMs to steer its behavior for desired outcomes
without updating the model weights. When using the early
LLMs, their performances might not be as impressive, so re-
searchers often use pre-training or fine-tuning techniques to
adjust the models for specific domains and tasks in order to
improve their performance. Then with the upgrading of LLM
technology, especially with the introduction of GPT-3 and later
LLMs, the knowledge contained within the models and their
understanding/inference capability has increased significantly.
Therefore, researchers will typically rely on prompt engineering
to consider how to design appropriate prompts to stimulate the
model’s knowledge.

Among the 64 studies with prompt engineering, 51 studies in-
volve zero-shot learning, and 25 studies involve few-shot learn-
ing (a study may involve multiple types). There are also studies
involving the chain-of-though (7 studies), self-consistency
(1 study), and automatic prompt (1 study).

Zero-shot learning is to simply feed the task text to the
model and ask for results. Many of the collected studies employ
the Codex, CodeT5, and CodeGen (as shown in Section V-A),
which is already trained on source code. Hence, for the tasks
dealing with source code like unit test case generation and
program repair as demonstrated in previous sections, directly
querying the LLM with prompts is the common practice. There
are generally two types of manners of zero-shot learning, i.e.,
with and without instructions. For example, Xie et al. [36]
would provide the LLMs with the instructions as “please help
me generate a JUnit test for a specific Java method...” to facili-
tate the unit test case generation. In contrast, Siddiq et al. [39]
only provide the code header of the unit test case (e.g., “class
${className}${suffix}Test {”), and the LLMs would carry out
the unit test case generation automatically. Generally speaking,
prompts with clear instructions will yield more accurate results,
while prompts without instructions are typically suitable for
very specific situations.

Few-shot learning presents a set of high-quality demon-
strations, each consisting of both input and desired output, on
the target task. As the model first sees the examples, it can
better understand human intention and criteria for what kinds of
answers are wanted, which is especially important for tasks that
are not so straightforward or intuitive to the LLM. For example,
when conducting the automatic test generation from general bug
reports, Kang et al. [78] provide examples of bug reports (ques-
tions) and the corresponding bug reproducing tests (answers) to
the LLM, and their results show that two examples can achieve
the highest performance than no examples or other number of
examples. Another example of test assertion generation, Nashid
et al. [47] provide demonstrations of the focal method, the test
method containing an <AssertPlaceholder>, and the expected
assertion, which enables the LLMs to better understand the task.

Chain-of-thought (CoT) prompting generates a sequence
of short sentences to describe reasoning logics step by step
(also known as reasoning chains or rationales) to the LLMs for
generating the final answer. For example, for program repair
from the natural language issue descriptions [122], given the
buggy code and issue report, the authors first ask the LLM
to localize the bug, and then they ask it to explain why the
localized lines are buggy, finally, they ask the LLM to fix the
bug. Another example is for generating unusual programs for
fuzzing deep learning libraries, Deng et al. [58] first generate
a possible “bug” (bug description) before generating the actual
“bug-triggering” code snippet that invokes the target API. The
predicted bug description provides an additional hint to the
LLM, indicating that the generated code should try to cover
specific potential buggy behavior.

Self-consistency involves evaluating the coherence and con-
sistency of the LLM’s responses on the same input in different
contexts. There is one study with this prompt type, and it
is about debugging. Kang et al. [83] employ a hypothesize-
observe-conclude loop, which first generates a hypothesis about
what the bug is and constructs an experiment to verify, using
an LLM, then decide whether the hypothesis is correct based
on the experiment result (with a debugger or code execution)
using an LLM, after that, depending on the conclusion, it either
starts with a new hypothesis or opts to terminate the debugging
process and generate a fix.

Automatic prompt aims to automatically generate and select
the appropriate instruction for the LLMs, instead of requiring

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

926 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Fig. 8. Mapping between testing tasks and how LLMs are used.

the user to manually engineer a prompt. Xia et al. [67] intro-
duce an auto-prompting step that automatically distils all user-
provided inputs into a concise and effective prompt for fuzzing.
Specifically, they first generate a list of candidate prompts by
incorporating the user inputs and auto prompting instruction
while setting the LLM at high temperature, then a small-scale
fuzzing experiment is conducted to evaluate each candidate
prompt, and the best one is selected.

Note that there are fourteen studies that apply the iterative
prompt design when using zero-shot or few-shot learning, in
which the approach continuously refines the prompts with the
running information of the testing task, e.g., the test failure
information. For example, for program repair, Xia et al. [115]
interleave patch generation with test validation feedback to
prompt future generation iteratively. In detail, they incorporate
various information from a failing test including its name, the
relevant code line(s) triggering the test failure, and the error
message produced in the next round of prompting which can
help the model understand the failure reason and provide guid-
ance towards generating the correct fix. Another example is for
mobile GUI testing, Liu et al. [14] iteratively query the LLM
about the operation (e.g., click a button, enter a text) to be
conducted in the mobile app, and at each iteration, they would
provide the LLM with current context information like which
GUI pages and widgets have just explored.

Mapping between testing tasks and how LLMs are
used. Fig. 8 demonstrates the mapping between the testing tasks
(mentioned in Section IV) and how LLMs are used (as intro-
duced in this subsection). The unit test case generation and pro-
gram repair share similar patterns of communicating with the
LLMs, since both tasks are closely related to the source code.
Typically, researchers utilize pre-training and/or fine-tuning and
zero-shot learning methods for these two tasks. Zero-shot learn-
ing is suitable because these tasks are relatively straightforward
and can be easily understood by LLMs. Moreover, since the
training data for these two tasks can be automatically collected
from source code repositories, pre-training and/or fine-tuning
methods are widely employed for these two tasks, which can
enhance LLMs’ understanding of domain-specific knowledge.

In comparison, for system test input generation, zero-shot
learning and few-shot learning methods are commonly used.

Fig. 9. Input of LLM.

This might be because this task often involves generating spe-
cific types of inputs, and demonstrations in few-shot learn-
ing can assist the LLMs in better understanding what should
be generated. Besides, for this task, the utilization of pre-
training and/or fine-tuning methods are not as widespread as
in unit test case generation and program repair. This might
be attributed to the fact that training data for system testing
varies across different software and is relatively challenging to
collect automatically.

C. Input of LLM

We also find that different testing tasks or software under
test might involve diversified input when querying the LLM, as
demonstrated in Fig. 9.

The most commonly utilized input is the source code since a
large portion of collected studies relate to program repair or unit
test case generation whose input are source code. For unit test
case generation, typical code-related information would be (i)
the complete focal method, including the signature and body;
(ii) the name of the focal class (i.e., the class that the focal
method belongs to); (iii) the field in the focal class; and (iv) the
signatures of all methods defined in the focal class [7], [26]. For
program repair, there can be different setups and involve dif-
ferent inputs, including (i) inputting a buggy function with the
goal of outputting the patched function, (ii) inputting the buggy
location with the goal of generating the correct replacement
code (can be a single line change) given the prefix and suffix of
the buggy function [93]. Besides, there can be variations for the
buggy location input, i.e., (i) does not contain the buggy lines
(but the bug location is still known), (ii) give the buggy lines
as lines of comments.

There are also 12 studies taking the bug description as
input for the LLM. For example, Kang et al. [78] take the
bug description as input when querying LLM and let the LLM
generate the bug-reproducing test cases. Fakhoury et al. [122]
input the natural language descriptions of bugs to the LLM, and
generate the correct code fixes.

There are 7 studies that would provide the intermediate
error information, e.g., test failure information, to the LLM,
and would conduct the iterative prompt (as described in Sec-
tion V-B) to enrich the context provided to the LLM. These

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 927

Fig. 10. Distribution about other techniques incorporated with LLMs (Note that, a study can involve multiple types).

studies are related to the unit test case generation and program
repair, since in these scenarios, the running information can be
acquired easily.

When testing mobile apps, since the utilized LLM could not
understand the image of the GUI page, the view hierarchy file
which represents the details of the GUI page usually acts as
the input to LLMs. Nevertheless, with the emergence of GPT-4
which is a multimodal model and accepts both image and text
inputs for model input, the GUI screenshots might be directly
utilized for LLM’s input.

D. Incorporating Other Techniques With LLM

There are divided opinions on whether LLM has reached an
all-powerful status that requires no other techniques. As shown
in Fig. 10, among our collected studies, 67 of them utilize LLMs
to address the entire testing task, while 35 studies incorporate
additional techniques. These techniques include mutation test-
ing, differential testing, syntactic checking, program analysis,
statistical analysis, etc.

The reason why researchers still choose to combine LLMs
with other techniques might be because, despite exhibiting
enormous potential in various tasks, LLMs still possess lim-
itations such as comprehending code semantics and handling
complex program structures. Therefore, combining LLMs with
other techniques optimizes their strengths and weaknesses to
achieve better outcomes in specific scenarios. In addition, it is
important to note that while LLMs are capable of generating
correct code, they may not necessarily produce sufficient test
cases to check for edge cases or rare scenarios. This is where
mutation and other testing techniques come into play, as they
allow for the generation of more diverse and complex code that
can better simulate real-world scenarios. Taken in this sense,
a testing approach can incorporate a combination of different
techniques, including both LLMs and other testing strategies,
to ensure comprehensive coverage and effectiveness.

1) LLM + Statistical Analysis: As LLMs can often generate
a multitude of outputs, manually sifting through and identifying
the correct output can be overwhelmingly laborious. As such,
researchers have turned to statistical analysis techniques like
ranking and clustering [28], [45], [78], [93], [116] to efficiently
filter through LLM’s outputs and ultimately obtain more accu-
rate results.

2) LLM + Program Analysis: When utilizing LLMs to
accomplish tasks such as generating unit test cases and repairing
software code, it is important to consider that software code
inherently possesses structural information, which may not be
fully understood by LLMs. Hence, researchers often utilize pro-
gram analysis techniques, including code abstract syntax trees
(ASTs) [74], to represent the structure of code more effectively
and increase the LLM’s ability to comprehend the code accu-
rately. Researchers also perform the structure-based subsetting
of code lines to narrow the focus for LLM [94], or extract
additional code context from other code files [7], to enable the
models to focus on the most task-relevant information in the
codebase and lead to more accurate predictions.

3) LLM + Mutation Testing: It is mainly targeting at
generating more diversified test inputs. For example, Deng et al.
[59] first use LLM to generate the seed programs (e.g., code
snippets using a target DL API) for fuzzing deep learning
libraries. To enrich the pool of these test programs, they replace
parts of the seed program with masked tokens using mutation
operators (e.g., replaces the API call arguments with the span
token) to produce masked inputs, and again utilize the LLMs
to perform code infilling to generate new code that replaces the
masked tokens.

4) LLM + Syntactic Checking: Although LLMs have
shown remarkable performance in various natural language
processing tasks, the generated code from these models can
sometimes be syntactically incorrect, leading to potential errors
and reduced usability. Therefore, researchers have proposed
to leverage syntax checking to identify and correct errors in
the generated code. For example, in their work for unit test
case generation, Alagarsamy et al. [29] additionally introduce
a verification method to check and repair the naming con-
sistency (i.e., revising the test method name to be consistent
with the focal method name) and the test signatures (i.e.,
adding missing keywords like public, void, or @test annota-
tions). Xie et al. [36] also validates the generated unit test
case and employs rule-based repair to fix syntactic and simple
compile errors.

5) LLM + Differential Testing: Differential testing is well-
suited to find semantic or logic bugs that do not exhibit explicit
erroneous behaviors like crashes or assertion failures. In this
category of our collected studies, the LLM is mainly responsible

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

928 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

for generating valid and diversified inputs, while the differential
testing helps to determine whether there is a triggered bug
based on the software’s output. For example, Ye et al. [48]
first uses LLM to produce random JavaScript programs, and
leverages the language specification document to generate test
data, then conduct the differential testing on JavaScript engines
such as JavaScriptCore, ChakraCore, SpiderMonkey, QuickJS,
etc. There are also studies utilizing the LLMs to generate test
inputs and then conduct differential testing for fuzzing DL
libraries [58], [59] and SAT solvers [63]. Li et al. [87] employs
the LLM in finding the failure-inducing test cases. In detail,
given a program under test, they first request the LLM to infer
the intention of the program, then request the LLM to generate
programs that have the same intention, which are alternative
implementations of the program, and are likely free of the
program’s bug. Then they perform the differential testing with
the program under test and the generated programs to find the
failure-inducing test cases.

VI. CHALLENGES AND OPPORTUNITIES

Based on the above analysis from the viewpoints of software
testing and LLM, we summarize the challenges and opportuni-
ties when conducting software testing with LLM.

A. Challenges

As indicated by this survey, software testing with LLMs has
undergone significant growth in the past two years. However,
it is still in its early stages of development, and numerous
challenges and open questions need to be addressed.

1) Challenges for Achieving High Coverage: Exploring the
diverse behaviors of the software under test to achieve high
coverage is always a significant concern in software testing.
In this context, test generation differs from code generation,
as code generation primarily focuses on producing a single,
correct code snippet, whereas software testing requires gen-
erating diverse test inputs to ensure better coverage of the
software. Although setting a high temperature can facilitate the
LLMs in generating different outputs, it remains challenging
for LLMs to directly achieve the required diversity. For ex-
ample, for unit test case generation, in SF110 dataset, the line
coverage is merely 2% and the branch coverage is merely 1%
[39]. For system test input generation, in terms of fuzzing DL
libraries, the API coverage for TensorFlow is reported to be 66%
(2215/3316) [59].

From our collected studies, we observe that the researchers
often utilize mutation testing together with the LLMs to gen-
erate more diversified outputs. For example, when fuzzing
a DL library, instead of directly generating the code snip-
pet with LLM, Deng et al. [59] replace parts of the selected
seed (code generated by LLM) with masked tokens using
different mutation operators to produce masked inputs. They
then leverage the LLM to perform code infilling to generate
new code that replaces the masked tokens, which can signifi-
cantly increase the diversity of the generated tests. Liu et al.
[65] leverage LLM to produce the test generators (each of
which can yield a batch of unusual text inputs under the same

mutation rule) together with the mutation rules for text-oriented
fuzzing, which reduces the human effort required for designing
mutation rules.

A potential research direction could involve utilizing testing-
specific data to train or fine-tune a specialized LLM that is
specifically designed to understand the nature of testing. By do-
ing so, the LLM can inherently acknowledge the requirements
of testing and autonomously generate diverse outputs.

2) Challenges in Test Oracle Problem: The oracle problem
has been a longstanding challenge in various testing applica-
tions, e.g., testing machine learning systems [148] and testing
deep learning libraries [59]. To alleviate the oracle problem to
the overall testing activities, a common practice in our collected
studies is to transform it into a more easily derived form, often
by utilizing differential testing [63] or focusing on only identi-
fying crash bugs [14].

There are successful applications of differential testing with
LLMs, as shown in Fig. 10. For instance, when testing the
SMT solvers, Sun et al. adopt differential testing which involves
comparing the results of multiple SMT solvers (i.e., Z3, cvc5,
and Bitwuzla) on the same generated test formulas by LLM
[63]. However, this approach is limited to systems where coun-
terpart software or running environment can easily be found,
potentially restricting its applicability. Moreover, to mitigate
the oracle problem, other studies only focus on the crash bugs
which are easily observed automatically. This is particularly the
case for mobile applications testing, in which the LLMs guide
the testing in exploring more diversified pages, conducting more
complex operational actions, and covering more meaningful
operational sequences [14]. However, this significantly restricts
the potential of utilizing the LLMs for uncovering various types
of software bugs.

Exploring the use of LLMs to derive other types of test or-
acles represents an interesting and valuable research direction.
Specifically, metamorphic testing is also widely used in soft-
ware testing practices to help mitigate the oracle problem, yet in
most cases, defining metamorphic relations relies on human in-
genuity. Luu et al. [56] have examined the effectiveness of LLM
in generating metamorphic relations, yet they only experiment
with straightforward prompts by directly querying ChatGPT.
Further exploration, potentially incorporating human-computer
interaction or domain knowledge, is highly encouraged. An-
other promising avenue is exploring the capability of LLMs to
automatically generate test cases based on metamorphic rela-
tions, covering a wide range of inputs.

The advancement of multi-model LLMs like GPT-4 may
open up possibilities for exploring their ability to detect bugs in
software user interfaces and assist in deriving test oracles. By
leveraging the image understanding and reasoning capabilities
of these models, one can investigate their potential to auto-
matically identify inconsistencies, errors, or usability issues in
user interfaces.

3) Challenges for Rigorous Evaluations: The lack of bench-
mark datasets and the potential data leakage issues associated
with LLM-based techniques present challenges in conducting
rigorous evaluations and comprehensive comparisons of pro-
posed methods.

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 929

For program repair, there are only two well-known and
commonly-used benchmarks, i.e., Defect4J and QuixBugs, as
demonstrated in Table IV. Furthermore, these datasets are
not specially designed for testing the LLMs. For example,
as reported by Xia et al. [93], 39 out of 40 Python bugs
in the QuixBugs dataset can be fixed by Codex, yet in real-
world practice, the successful fix rate can be nowhere near
as high. For unit test case generation, there are no widely
recognized benchmarks, and different studies would utilize dif-
ferent datasets for performance evaluation, as demonstrated in
Table III. This indicates the need to build more specialized and
diversified benchmarks.

Furthermore, the LLMs may have seen the widely-used
benchmarks in their pre-training data, i.e., data leakage issues.
Jiang et al. [113] check the CodeSearchNet and BigQuery,
which are the data sources of common LLMs, and the results
show that four repositories used by the Defect4J benchmark are
also in CodeSearchNet, and the whole Defects4J repository is
included by BigQuery. Therefore, it is very likely that existing
program repair benchmarks are seen by the LLMs during pre-
training. This data leakage issue has also been investigated in
machine learning-related studies. For example, Tu et al. [149]
focus on the data leakage in issue tracking data, and results show
that information leaked from the “future” makes prediction
models misleadingly optimistic. This reminds us that the perfor-
mance of LLMs on software testing tasks may not be as good
as reported in previous studies. It also suggests that we need
more specialized datasets that are not seen by LLMs to serve as
benchmarks. One way is to collect it from specialized sources,
e.g., user-generated content from niche online communities.

4) Challenges in Real-World Application of LLMs in Soft-
ware Testing: As we mentioned in Section V-B, in the early
days of using LLMs, pre-training and fine-tuning are commonly
used practice, considering the model parameters are relatively
few resulting in weaker model capabilities (e.g., T5). As time
progressed, the number of model parameters increased signifi-
cantly, leading to the emergence of models with greater capabil-
ities (e.g., ChatGPT). And in recent studies, prompt engineering
has become a common approach. However, due to concerns
regarding data privacy, when considering real-world practice,
most software organizations tend to avoid using commercial
LLMs and would prefer to adopt open-source ones with training
or fine-tuning using organization-specific data. Furthermore,
some companies also consider the current limitations in terms of
computational power or pay close attention to energy consump-
tion, they tend to fine-tune medium-sized models. It is quite
challenging for these models to achieve similar performance
to what our collected papers have reported. For instance, in
the widely-used QuixBugs dataset, it has been reported that
39 out of 40 Python bugs and 34 out of 40 Java bugs can
be automatically fixed [93]. However, when it comes to DL
programs collected from Stack Overflow, which represent real-
world coding practice, only 16 out of 72 Python bugs can be
automatically fixed [89].

Recent research has highlighted the importance of high-
quality training data in improving the performance of models
for code-related tasks [150], yet manually building high-quality

organization-specific datasets for training or fine-tuning is time-
consuming and labor-intensive. To address this, one is encour-
aged to utilize the automated techniques of mining software
repositories to build the datasets, for example, techniques like
key information extraction techniques from Stack Overflow
[151] offer potential solutions for automatically gathering rel-
evant data.

In addition, exploring the methodology for better fine-tuning
the LLMs with software-specific data is worth considering be-
cause software-specific data differs from natural language data
as it contains more structural information, such as data flow
and control flow. Previous research on code representations has
shown the benefits of incorporating data flow, which captures
the semantic-level structure of code and represents the rela-
tionship between variables in terms of “whether-value-comes-
from” [152]. These insights can provide valuable guidance for
effectively fine-tuning LLMs with software-specific data.

B. Opportunities

There are also many research opportunities in software test-
ing with LLMs, which can greatly benefit developers, users,
and the research community. While not necessarily challenges,
these opportunities contribute to advancements in software test-
ing, benefiting practitioners and the wider research community.

1) Exploring LLMs in the Early Stage of Testing: As
shown in Fig. 4, LLMs have not been used in the early stage of
testing, e.g., test requirements, and test planning. There might
be two main reasons behind that. The first is the subjectivity
in early-stage testing tasks. Many tasks in the early stages of
testing, such as requirements gathering, test plan creation, and
design reviews, may involve subjective assessments that require
significant input from human experts. This could make it less
suitable for LLMs that rely heavily on data-driven approaches.
The second might be the lack of open-sourced data in the early
stages. Unlike in later stages of testing, there may be limited
data available online during early-stage activities. This could
mean that LLMs may not have seen much of this type of data,
and therefore may not perform well on these tasks.

Adopting a human-computer interaction schema for tack-
ling early-stage testing tasks would harness the domain-specific
knowledge of human developers and leverage the general
knowledge embedded in LLMs. Additionally, it is highly en-
couraged for software development companies to record and
provide access to early-stage testing data, allowing for im-
proved training and performance of LLMs in these critical
testing activities.

2) Exploring LLMs in Other Testing Phases: We have
analyzed the distribution of testing phases for the collected
studies. As shown in Fig 11, we can observe that LLMs are
most commonly used in unit testing, followed by system testing.
However, there is still no research on the use of LLMs in
integration testing and acceptance testing.

For integration testing, it involves testing the interfaces be-
tween different software modules. In some software organiza-
tions, integration testing might be merged with unit testing,
which can be a possible reason why LLM is rarely utilized in

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

930 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Fig. 11. Distribution of testing phases (note that we omit the studies which
do not explicitly specify the testing phases, e.g., program repair).

integration testing. Another reason might be that the size and
complexity of the input data in this circumstance may exceed
the capacity of the LLM to process and analyze (e.g., the source
code of all involved software modules), which can lead to
errors or unreliable results. To tackle this, a potential reference
can be found in Section IV-A, where Xie et al. [36] design
a method to organize the necessary information into the pre-
defined maximum prompt token limit of the LLM. Furthermore,
integration testing requires diversified data to be generated
to sufficiently test the interface among multiple modules. As
mentioned in Section IV-C, previous work has demonstrated
the LLM’s capability in generating diversified test input for
system testing, in conjunction with mutation testing techniques
[48], [59]. And these can provide insights about generating the
diversified interface data for integration testing.

Acceptance testing is usually conducted by business analysts
or end-users to validate the system’s functionality and usabil-
ity, which requires more non-technical language and domain-
specific knowledge, thus making it challenging to apply LLM
effectively. Since acceptance testing involves humans, it is well-
suited for the use of human-in-the-loop schema with LLMs.
This has been studied in traditional machine learning [153], but
has not yet been explored with LLMs. Specifically, the LLMs
can be responsible for automatically generating test cases, eval-
uating test coverage, etc, while human testers are responsible
for checking the program’s behavior and verifying test oracle.

3) Exploring LLMs for More Types of Software: We analyze
what types of software have been explored in the collected
studies, as shown in Fig. 5. Note that, since a large portion
of studies are focused on unit testing or program repair, they
are conducted on publicly available datasets and do not involve
specific software types.

From the analysis in Section IV-C, the LLM can generate not
only the source code for testing DL libraries but also the textual
input for testing mobile apps, even the models for testing CPS.
Overall, the LLM provides a flexible and powerful framework
for generating test inputs for a wide range of applications.
Its versatility would make it useful for testing the software in
other domains.

From one point of view, some proposed techniques can be
applied to other types of software. For example, in the paper
proposed for testing deep learning libraries [58], since it pro-
poses techniques for generating diversified, complicated, and
human-like DL programs, the authors state that the approach
can be easily extended to test software systems from other

application domains, e.g., interpreters, database systems, and
other popular libraries. More than that, there are already studies
that focus on universal fuzzing techniques [52], [67] which are
designed to be adaptable and applicable to different types of
test inputs and software.

From another point of view, other types of software can also
benefit from the capabilities of LLMs to design the testing
techniques that are better suited to their specific domain and
characteristics. For instance, the metaverse, with its immersive
virtual environments and complex interactions, presents unique
challenges for software testing. LLMs can be leveraged to gen-
erate diverse and realistic inputs that mimic user behavior and
interactions within the metaverse, which are never explored.

4) Exploring LLMs for Non-Functional Testing: In our
collected studies, LLMs are primarily used for functional test-
ing, and no practice in performance testing, usability testing or
others. One possible reason for the prevalence of LLM-based
solutions in functional testing is that they can convert functional
testing problems into code generation or natural language gen-
eration problems [14], [59], which LLMs are particularly adept
at solving.

On the other hand, performance testing and usability testing
may require more specialized models that are designed to detect
and analyze specific types of data, handle complex statistical
analyses, or determine the buggy criteria. Moreover, there have
been dozens of performance testing tools (e.g., LoadRunner
[154]) that can generate a workload that simulates real-world
usage scenarios and achieve relatively satisfactory performance.

The potential opportunities might let the LLM integrate the
performance testing tools and acts like the LangChain [155],
to better simulate different types of workloads based on real
user behavior. Furthermore, the LLMs can identify the param-
eter combinations and values that have the highest potential to
trigger performance problems. It is essentially a way to rank and
prioritize different parameter settings based on their impact on
performance and improve the efficiency of performance testing.

5) Exploring Advanced Prompt Engineering: There are a
total of 11 commonly used prompt engineering techniques as
listed in a popular prompt engineering guide [156], as shown
in Fig. 12. Currently, in our collected studies, only the first five
techniques are being utilized. The more advanced techniques
have not been employed yet, and can be explored in the future
for prompt design.

For instance, multimodal chain of thought prompting in-
volves using diverse sensory and cognitive cues to stimulate
thinking and creativity in LLMs [157]. By providing images
(e.g., GUI screenshots) or audio recordings related to the soft-
ware under test can help the LLM better understand the soft-
ware’s context and potential issues. Besides, try to prompt the
LLM to imagine itself in different roles, such as a developer,
user, or quality assurance specialist. This perspective-shifting
exercise enables the LLM to approach software testing from
multiple viewpoints and uncover different aspects that might
require attention or investigation.

Graph prompting [158] involves the representation of infor-
mation using graphs or visual structures to facilitate understand-
ing and problem-solving. Graph prompting can be a natural

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 931

Fig. 12. List of advanced prompt engineering practices and those utilized
in the collected papers.

match with software engineering, consider it involves various
dependencies, control flow, data flow, state transitions, or other
relevant graph structure. Graph prompting can be beneficial in
analyzing this structural information, and enabling the LLMs
to comprehend the software under test effectively. For instance,
testers can use graph prompts to visualize test coverage, identify
untested areas or paths, and ensure adequate test execution.

6) Incorporating LLMs With Traditional Techniques: There
is currently no clear consensus on the extent to which LLMs can
solve software testing problems. From the analysis in Section
V-D, we have seen some promising results from studies that
have combined LLMs with traditional software testing tech-
niques. This implies the LLMs are not the sole silver bullet for
software testing. Considering the availability of many mature
software testing techniques and tools, and the limited capa-
bilities of LLMs, it is necessary to explore other better ways
to combine LLMs with traditional testing or program analysis
techniques and tools for better software testing.

Based on the collected studies, the LLMs have been success-
fully utilized together with various techniques such as differen-
tial testing (e.g., [63]), mutation testing (e.g., [59]), program
analysis (e.g., [104], as shown in Fig. 10. From one perspec-
tive, future studies can explore improved integration of these
traditional techniques with LLMs. Take mutation testing as an
example, current practices mainly rely on the human-designed
mutation rules to mutate the candidate tests, and let the LLMs
re-generate new tests [38], [59], [67], while Liu et al. directly
utilize the LLMs for producing the mutation rules alongside the
mutated tests [65]. Further explorations in this direction are of
great interest.

From another point of view, more traditional techniques can
be incorporated in LLMs for software testing. For instance,
besides the aforementioned traditional techniques, the LLMs
have been combined with formal verification for self-healing
software detection in the field of software security [159]. More
attempts are encouraged. Moreover, considering the existence
of numerous mature software testing tools, one can explore the
integration of LLMs with these tools, allowing them to act as
a “LangChain” to better explore the potential of these tools.

VII. RELATED WORK

The systematic literature review is a crucial manner for gain-
ing insights into the current trends and future directions within
a particular field. It enables us to understand and stay updated
on the developments in that domain.

Wang et al. surveyed the machine learning and deep learn-
ing techniques for software engineering [160]. Yang et al. and
Watson et al. respectively carried out surveys about the use
of deep learning in software engineering domain [161], [162].
Bajammal et al. surveyed the utilization of computer vision
techniques to improve software engineering tasks [163]. Zhang
et al. provided a survey of techniques for testing machine learn-
ing systems [150]

With the advancements of artificial intelligence and LLMs,
researchers also conduct systematic literature reviews about
LLMs, and their applications in various fields (e.g., software en-
gineering). Zhao et al. [17] reviewed recent advances in LLMs
by providing an overview of their background, key findings, and
mainstream techniques. They focused on four major aspects of
LLMs, namely pre-training, adaptation tuning, utilization, and
capacity evaluation. Additionally, they summarized the avail-
able resources for developing LLMs and discuss the remaining
issues for future directions. Hou et al. conducted a system-
atic literature review on using LLMs for software engineering,
with a particular focus on understanding how LLMs can be
exploited to optimize processes and outcomes [164]. Fan et
al. conducted a survey of LLMs for software engineering, and
set out open research challenges for the application of LLMs
to technical problems faced by software engineers [165]. Zan
et al. conducted a survey of existing LLMs for NL2Code task
(i.e., generating code from a natural language description), and
reviewed benchmarks and metrics [166].

While these studies either targeted the broader software engi-
neering domain (with a limited focus on software testing tasks)
or focused on other software development tasks (excluding soft-
ware testing), this paper specifically focuses on the use of LLMs
for software testing. It surveys related studies, summarizes key
challenges and potential opportunities, and serves as a roadmap
for future research in this area.

VIII. CONCLUSION

This paper provides a comprehensive review of the use of
LLMs in software testing. We have analyzed relevant studies
that have utilized LLMs in software testing from both the soft-
ware testing and LLMs perspectives. This paper also highlights
the challenges and potential opportunities in this direction. Re-
sults of this review demonstrate that LLMs have been success-
fully applied in a wide range of testing tasks, including unit
test case generation, test oracle generation, system test input
generation, program debugging, and program repair. However,
challenges still exist in achieving high testing coverage, ad-
dressing the test oracle problem, conducting rigorous evalua-
tions, and applying LLMs in real-world scenarios. Additionally,
it is observed that LLMs are commonly used in only a subset
of the entire testing lifecycle, for example, they are primarily
utilized in the middle and later stages of testing, only serving

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

932 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

the unit and system testing phases, and only for functional
testing. This highlights the research opportunities for exploring
the uncovered areas. Regarding how the LLMs are utilized, we
find that various pre-training/fine-tuning and prompt engineer-
ing methods have been developed to enhance the capabilities
of LLMs in addressing testing tasks. However, more advanced
techniques in prompt design have yet to be explored and can
be an avenue for future research.

It can serve as a roadmap for future research in this area,
identifying gaps in our current understanding of the use of
LLMs in software testing and highlighting potential avenues for
exploration. We believe that the insights provided in this paper
will be valuable to both researchers and practitioners in the field
of software engineering, assisting them in leveraging LLMs to
improve software testing practices and ultimately enhance the
quality and reliability of software systems.

REFERENCES

[1] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The Art of
Software Testing, 2nd ed. Hoboken, NJ, USA: Wiley, 2004.

[2] M. Pezze and M. Young, Software Testing and Analysis—Process,
Principles and Techniques. Hoboken, NJ, USA: Wiley, 2007.

[3] M. Harman and P. McMinn, “A theoretical and empirical study of
search-based testing: Local, global, and hybrid search,” IEEE Trans.
Softw. Eng., vol. 36, no. 2, pp. 226–247, Mar./Apr. 2010.

[4] P. Delgado-Pérez, A. Ramírez, K. J. Valle-Gómez, I. Medina-Bulo, and
J. R. Romero, “InterEvo-TR: Interactive evolutionary test generation
with readability assessment,” IEEE Trans. Softw. Eng., vol. 49, no. 4,
pp. 2580–2596, Apr. 2023.

[5] X. Xiao, S. Li, T. Xie, and N. Tillmann, “Characteristic studies of
loop problems for structural test generation via symbolic execution,”
in Proc. 28th IEEE/ACM Int. Conf. Automated Softw. Eng., (ASE),
Silicon Valley, CA, USA, E. Denney, T. Bultan, and A. Zeller, Eds.,
Piscataway, NJ, USA: IEEE Press, Nov. 2013, pp. 246–256.

[6] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proc. 29th Int. Conf. Softw. Eng. (ICSE),
Minneapolis, MN, USA, Los Alamitos, CA, USA: IEEE Comput. Soc.
Press, May 2007, pp. 75–84.

[7] Z. Yuan, et al., “No more manual tests? Evaluating and improving
chatGPT for unit test generation,” 2023, arXiv:2305.04207.

[8] Y. Tang, Z. Liu, Z. Zhou, and X. Luo, “ChatGPT vs SBST: A
comparative assessment of unit test suite generation,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2307.00588

[9] Android Developers, “Ui/application exerciser monkey,” 2012. Ac-
cessed: Dec. 27, 2023. [Online]. Available: https://developer.android.
google.cn/studio/test/other-testing-tools/monkey

[10] Y. Li, Z. Yang, Y. Guo, and X. Chen, “DroidBot: A lightweight UI-
guided test input generator for android,” in Proc. IEEE/ACM 39th Int.
Conf. Softw. Eng. Companion (ICSE), Piscataway, NJ, USA: IEEE
Press, 2017, pp. 23–26.

[11] T. Su et al., “Guided, stochastic model-based gui testing of an-
droid apps,” in Proc. 11th Joint Meeting Found. Softw. Eng., 2017,
pp. 245–256.

[12] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-travel
testing of android apps,” in Proc. IEEE/ACM 42nd Int. Conf. Softw.
Eng. (ICSE), Piscataway, NJ, USA: IEEE Press, 2020, pp. 481–492.

[13] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in
Proc. 29th ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2020,
pp. 153–164.

[14] Z. Liu et al., “Make LLM a testing expert: Bringing human-like
interaction to mobile GUI testing via functionality-aware decisions,”
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.15780

[15] T. Su, J. Wang, and Z. Su, “Benchmarking automated GUI testing for
android against real-world bugs,” in Proc. 29th ACM Joint Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE), Athens, Greece,
New York, NY, USA: ACM, Aug. 2021, pp. 119–130.

[16] M. Shanahan, “Talking about large language models,” 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2212.03551

[17] W. X. Zhao et al., “A survey of large language models,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2303.18223

[18] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
language models are zero-shot reasoners,” in Proc. NeurIPS, 2022.
[Online]. Available: http://papers.nips.cc/paper_files/paper/2022/hash/
8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html

[19] J. Wei et al., “Chain-of-thought prompting elicits reasoning in large
language models,” in Proc. NeurIPS, 2022. [Online]. Available: http://
papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7
b31abca4-Abstract-Conference.html

[20] J. Li, G. Li, Y. Li, and Z. Jin, “Structured chain-of-thought prompting
for code generation,” 2023, arXiv:2305.06599.

[21] J. Li, Y. Li, G. Li, Z. Jin, Y. Hao, and X. Hu, “Skcoder: A sketch-based
approach for automatic code generation,” in Proc. IEEE/ACM 45th Int.
Conf. Softw. Eng. (ICSE), 2023, pp. 2124–2135.

[22] J. Li, Y. Zhao, Y. Li, G. Li, and Z. Jin, “AceCoder: Utilizing existing
code to enhance code generation,” 2023, arXiv:2303.17780.

[23] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-collaboration code genera-
tion via chatGPT” 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2304.07590

[24] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying large
language models and knowledge graphs: A roadmap,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2306.08302

[25] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sundaresan,
“Unit test case generation with transformers and focal context,” 2020,
arXiv:2009.05617.

[26] B. Chen et al., “Codet: Code generation with generated tests,” 2022,
arXiv:2207.10397.

[27] S. K. Lahiri et al., “Interactive code generation via test-driven user-
intent formalization,” 2022, arXiv:2208.05950.

[28] S. Alagarsamy, C. Tantithamthavorn, and A. Aleti, “A3test: Assertion-
augmented automated test case generation,” 2023, arXiv:2302.10352.

[29] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An empirical evaluation
of using large language models for automated unit test generation,”
IEEE Trans. Softw. Eng., vol. 50, no. 1, pp. 85–105, Jan. 2024.

[30] V. Guilherme and A. Vincenzi, “An initial investigation of chatGPT
unit test generation capability,” in Proc. 8th Brazilian Symp. Systematic
Automated Softw. Testing (SAST), Campo Grande, Brazil, A. L. Fontão
et al., Eds., New York, NY, USA: ACM, Sep. 2023, pp. 15–24.

[31] S. Hashtroudi, J. Shin, H. Hemmati, and S. Wang, “Automated test case
generation using code models and domain adaptation,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2308.08033

[32] L. Plein, W. C. Ouédraogo, J. Klein, and T. F. Bissyandé, “Automatic
generation of test cases based on bug reports: A feasibility study with
large language models,” 2023. [Online]. Available: https://doi.org/10.
48550/arXiv.2310.06320

[33] V. Vikram, C. Lemieux, and R. Padhye, “Can large language models
write good property-based tests?” 2023. [Online]. Available: https://
doi.org/10.48550/arXiv.2307.04346

[34] N. Rao, K. Jain, U. Alon, C. L. Goues, and V. J. Hellendoorn, “CAT-
LM training language models on aligned code and tests,” in Proc.
38th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Luxembourg,
Piscataway, NJ, USA: IEEE Press, Sep. 2023, pp. 409–420, doi:
10.1109/ASE56229.2023.00193.

[35] Z. Xie, Y. Chen, C. Zhi, S. Deng, and J. Yin, “Chatunitest: A chatGPT-
based automated unit test generation tool,” 2023, arXiv:2305.04764.

[36] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “CodaMosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in Proc. Int. Conf. Softw. Eng. (ICSE), 2023, pp. 919–931.

[37] A. M. Dakhel, A. Nikanjam, V. Majdinasab, F. Khomh, and M. C.
Desmarais, “Effective test generation using pre-trained large language
models and mutation testing,” 2023. [Online]. Available: https://doi.
org/10.48550/arXiv.2308.16557

[38] M. L. Siddiq, J. Santos, R. H. Tanvir, N. Ulfat, F. A. Rifat, and V.
C. Lopes, “Exploring the effectiveness of large language models in
generating unit tests,” 2023, arXiv:2305.00418.

[39] Y. Zhang, W. Song, Z. Ji, D. Yao, and N. Meng, “How well does LLM
generate security tests?” 2023. [Online]. Available: https://doi.org/10.
48550/arXiv.2310.00710

[40] V. Li and N. Doiron, “Prompting code interpreter to write better unit
tests on quixbugs functions,” 2023. [Online]. Available: https://doi.org/
10.48550/arXiv.2310.00483

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.48550/arXiv.2307.00588
https://developer.android.google.cn/studio/test/ other-testing-tools/monkey
https://developer.android.google.cn/studio/test/ other-testing-tools/monkey
https://doi.org/10.48550/arXiv.2310.15780
https://doi.org/10.48550/arXiv.2212.03551
https://doi.org/10.48550/arXiv.2303.18223
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2304.07590
https://doi.org/10.48550/arXiv.2304.07590
https://doi.org/10.48550/arXiv.2306.08302
https://doi.org/10.48550/arXiv.2308.08033
https://doi.org/10.48550/arXiv.2310.06320
https://doi.org/10.48550/arXiv.2310.06320
https://doi.org/10.48550/arXiv.2307.04346
https://doi.org/10.48550/arXiv.2307.04346
https://doi.org/10.1109/ASE56229.2023.00193
https://doi.org/10.48550/arXiv.2308.16557
https://doi.org/10.48550/arXiv.2308.16557
https://doi.org/10.48550/arXiv.2310.00710
https://doi.org/10.48550/arXiv.2310.00710
https://doi.org/10.48550/arXiv.2310.00483
https://doi.org/10.48550/arXiv.2310.00483

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 933

[41] B. Steenhoek, M. Tufano, N. Sundaresan, and A. Svyatkovskiy, “Rein-
forcement learning from automatic feedback for high-quality unit test
generation,” 2023, arXiv:2310.02368.

[42] S. Bhatia, T. Gandhi, D. Kumar, and P. Jalote, “Unit test generation
using generative AI: A comparative performance analysis of autogen-
eration tools,” 2023, arXiv:2312.10622.

[43] M. Tufano, D. Drain, A. Svyatkovskiy, and N. Sundaresan, “Gener-
ating accurate assert statements for unit test cases using pretrained
transformers,” in Proc. 3rd ACM/IEEE Int. Conf. Automat. Softw. Test,
2022, pp. 54–64.

[44] P. Nie, R. Banerjee, J. J. Li, R. J. Mooney, and M. Gligoric, “Learning
deep semantics for test completion,” 2023, arXiv:2302.10166.

[45] A. Mastropaolo et al., “Using transfer learning for code-related tasks,”
IEEE Trans. Softw. Eng., vol. 49, no. 4, pp. 1580–1598, Apr. 2023,
doi: 10.1109/TSE.2022.3183297.

[46] N. Nashid, M. Sintaha, and A. Mesbah, “Retrieval-based prompt
selection for code-related few-shot learning,” in Proc. 45th Int. Conf.
Softw. Eng. (ICSE), 2023, pp. 2450–2462.

[47] G. Ye et al., “Automated conformance testing for javascript engines
via deep compiler fuzzing,” in Proc. 42nd ACM SIGPLAN Int. Conf.
Program. Lang. Des. Implementation, 2021, pp. 435–450.

[48] Z. Liu et al., “Fill in the blank: Context-aware automated text input
generation for mobile gui testing,” 2022, arXiv:2212.04732.

[49] M. R. Taesiri, F. Macklon, Y. Wang, H. Shen, and C.-P. Bezemer,
“Large language models are pretty good zero-shot video game bug
detectors,” 2022, arXiv:2210.02506.

[50] S. L. Shrestha and C. Csallner, “SlGPT: Using transfer learning to
directly generate simulink model files and find bugs in the simulink
toolchain,” in Proc. Eval. Assessment Softw. Eng., 2021, pp. 260–265.

[51] J. Hu, Q. Zhang, and H. Yin, “Augmenting greybox fuzzing with
generative AI,” 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2306.06782

[52] A. Mathur, S. Pradhan, P. Soni, D. Patel, and R. Regunathan, “Auto-
mated test case generation using t5 and GPT-3,” in Proc. 9th Int. Conf.
Adv. Comput. Commun. Syst. (ICACCS), vol. 1, 2023, pp. 1986–1992.

[53] D. Zimmermann and A. Koziolek, “Automating GUI-based software
testing with GPT-3,” in Proc. IEEE Int. Conf. Softw. Testing, Verifica-
tion Validation Workshops (ICSTW), 2023, pp. 62–65.

[54] M. Taeb, A. Swearngin, E. Schoop, R. Cheng, Y. Jiang, and J. Nichols,
“Axnav: Replaying accessibility tests from natural language,” 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2310.02424

[55] Q. Luu, H. Liu, and T. Y. Chen, “Can chatGPT advance software
testing intelligence? An experience report on metamorphic testing,”
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.19204

[56] A. Khanfir, R. Degiovanni, M. Papadakis, and Y. L. Traon, “Ef-
ficient mutation testing via pre-trained language models,” 2023,
arXiv:2301.03543.

[57] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang,
“Large language models are edge-case fuzzers: Testing deep learning
libraries via fuzzGPT,” 2023, arXiv:2304.02014.

[58] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang,
“Large language models are zero shot fuzzers: Fuzzing deep learning
libraries via large language models,” 2023, arXiv:2209.11515.

[59] J. Ackerman and G. Cybenko, “Large language models for fuzzing
parsers (registered report),” in Proc. 2nd Int. Fuzzing Workshop
(FUZZING) Seattle, WA, USA, M. Böhme, Y. Noller, B. Ray, and
L. Szekeres, Eds., New York, NY, USA: ACM, Jul. 2023, pp. 31–38,
doi: 10.1145/3605157.3605173.

[60] S. Yu, C. Fang, Y. Ling, C. Wu, and Z. Chen, “LLM for test script
generation and migration: Challenges, capabilities, and opportunities,”
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.13574

[61] G. Deng et al., “PentestGPT: An llm-empowered automatic penetration
testing tool,” 2023. [Online]. Available: https://doi.org/10.48550/arXiv.
2308.06782

[62] M. Sun, Y. Yang, Y. Wang, M. Wen, H. Jia, and Y. Zhou, “SMT
solver validation empowered by large pre-trained language models,”
in Proc. 38th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Luxembourg, Piscataway, NJ, USA: IEEE Press, 2023, pp. 1288–1300,
doi: 10.1109/ASE56229.2023.00180.

[63] Y. Deng, J. Yao, Z. Tu, X. Zheng, M. Zhang, and T. Zhang, “Target: Au-
tomated scenario generation from traffic rules for testing autonomous
vehicles,” 2023. [Online]. Available: https://api.semanticscholar.org/
CorpusID:258588387

[64] Z. Liu et al., “Testing the limits: Unusual text inputs generation for
mobile app crash detection with large language model,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2310.15657

[65] C. Zhang et al., “Understanding large language model based fuzz driver
generation,” 2023. [Online]. Available: https://doi.org/10.48550/arXiv.
2307.12469

[66] C. Xia, M. Paltenghi, J. Tian, M. Pradel, and L. Zhang, “Universal
fuzzing via large language models,” 2023. [Online]. Available: https://
api.semanticscholar.org/CorpusID:260735598

[67] C. Tsigkanos, P. Rani, S. Müller, and T. Kehrer, “Variable discovery
with large language models for metamorphic testing of scientific
software,” in Proc. 23rd Int. Conf. Comput. Sci. (ICCS), Prague,
Czech Republic, J. Mikyska, C. de Mulatier, M. Paszynski, V. V.
Krzhizhanovskaya, J. J. Dongarra, and P. M. A. Sloot, Eds., vol. 14073.
Springer, Jul. 2023, pp. 321–335, doi: 10.1007/978-3-031-35995-8_23.

[68] C. Yang et al., “White-box compiler fuzzing empowered by large
language models,” 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2310.15991

[69] T. Zhang, I. C. Irsan, F. Thung, D. Han, D. Lo, and L. Jiang, “iTiger:
An automatic issue title generation tool,” in Proc. 30th ACM Joint Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., 2022, pp. 1637–1641.

[70] Y. Huang et al., “Crashtranslator: Automatically reproducing mobile
application crashes directly from stack trace,” 2023. [Online]. Avail-
able: https://doi.org/10.48550/arXiv.2310.07128

[71] T. Zhang, I. C. Irsan, F. Thung, and D. Lo, “Cupid: Leveraging chatGPT
for more accurate duplicate bug report detection,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2308.10022

[72] U. Mukherjee and M. M. Rahman, “Employing deep learning and
structured information retrieval to answer clarification questions on bug
reports,” 2023, arXiv:2304.12494.

[73] P. Mahbub, O. Shuvo, and M. M. Rahman, “Explaining software
bugs leveraging code structures in neural machine translation,” 2022,
arXiv:2212.04584.

[74] S. Feng and C. Chen, “Prompting is all your need: Automated android
bug replay with large language models,” 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2306.01987

[75] Y. Su, Z. Han, Z. Gao, Z. Xing, Q. Lu, and X. Xu, “Still confusing for
bug-component triaging? Deep feature learning and ensemble setting to
rescue,” in Proc. 31st IEEE/ACM Int. Conf. Program Comprehension
(ICPC), Melbourne, Australia, Piscataway, NJ, USA: IEEE Press, May
2023, pp. 316–327, doi: 10.1109/ICPC58990.2023.00046.

[76] N. D. Bui, Y. Wang, and S. Hoi, “Detect-localize-repair: A
unified framework for learning to debug with codet5,” 2022,
arXiv:2211.14875.

[77] S. Kang, J. Yoon, and S. Yoo, “Large language models are few-
shot testers: Exploring llm-based general bug reproduction,” 2022,
arXiv:2209.11515.

[78] S. Kang, G. An, and S. Yoo, “A preliminary evaluation of LLM-based
fault localization,” 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2308.05487

[79] P. Widjojo and C. Treude, “Addressing compiler errors: Stack overflow
or large language models?” 2023. [Online]. Available: https://doi.org/
10.48550/arXiv.2307.10793

[80] L. Plein and T. F. Bissyandé, “Can LLMs demystify bug reports?”
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.06310

[81] A. Taylor, A. Vassar, J. Renzella, and H. A. Pearce, “DCC—Help:
Generating context-aware compiler error explanations with large lan-
guage models,” 2023. [Online]. Available: https://api.semanticscholar.
org/CorpusID:261076439

[82] S. Kang, B. Chen, S. Yoo, and J.-G. Lou, “Explainable automated
debugging via large language model-driven scientific debugging,” 2023,
arXiv:2304.02195.

[83] A. Z. H. Yang, R. Martins, C. L. Goues, and V. J. Hellendoorn,
“Large language models for test-free fault localization,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2310.01726

[84] Y. Wu, Z. Li, J. M. Zhang, M. Papadakis, M. Harman, and Y.
Liu, “Large language models in fault localisation,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2308.15276

[85] H. Tu, Z. Zhou, H. Jiang, I. N. B. Yusuf, Y. Li, and L. Jiang,
“LLM4CBI: Taming llms to generate effective test programs for
compiler bug isolation,” 2023. [Online]. Available: https://doi.org/10.
48550/arXiv.2307.00593

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1109/TSE.2022.3183297
https://doi.org/10.48550/arXiv.2306.06782
https://doi.org/10.48550/arXiv.2306.06782
https://doi.org/10.48550/arXiv.2310.02424
https://doi.org/10.48550/arXiv.2310.19204
https://doi.org/10.1145/3605157.3605173
https://doi.org/10.48550/arXiv.2309.13574
https://doi.org/10.48550/arXiv.2308.06782
https://doi.org/10.48550/arXiv.2308.06782
https://doi.org/10.1109/ASE56229.2023.00180
https://api.semanticscholar.org/CorpusID:258588387
https://api.semanticscholar.org/CorpusID:258588387
https://doi.org/10.48550/arXiv.2310.15657
https://doi.org/10.48550/arXiv.2307.12469
https://doi.org/10.48550/arXiv.2307.12469
https://api.semanticscholar.org/CorpusID:260735598
https://api.semanticscholar.org/CorpusID:260735598
https://doi.org/10.1007/978-3-031-35995-8_23
https://doi.org/10.48550/arXiv.2310.15991
https://doi.org/10.48550/arXiv.2310.15991
https://doi.org/10.48550/arXiv.2310.07128
https://doi.org/10.48550/arXiv.2308.10022
https://doi.org/10.48550/arXiv.2306.01987
https://doi.org/10.1109/ICPC58990.2023.00046
https://doi.org/10.48550/arXiv.2308.05487
https://doi.org/10.48550/arXiv.2308.05487
https://doi.org/10.48550/arXiv.2307.10793
https://doi.org/10.48550/arXiv.2307.10793
https://doi.org/10.48550/arXiv.2310.06310
https://api.semanticscholar.org/CorpusID:261076439
https://api.semanticscholar.org/CorpusID:261076439
https://doi.org/10.48550/arXiv.2310.01726
https://doi.org/10.48550/arXiv.2308.15276
https://doi.org/10.48550/arXiv.2307.00593
https://doi.org/10.48550/arXiv.2307.00593

934 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

[86] T.-O. Li et al., “Nuances are the key: Unlocking chatGPT to find
failure-inducing tests with differential prompting,” in Proc. 38th
IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), 2023, pp. 14–26.

[87] X. Chen, M. Lin, N. Schärli, and D. Zhou, “Teaching large language
models to self-debug,” 2023. [Online]. Available: https://doi.org/10.
48550/arXiv.2304.05128

[88] J. Cao, M. Li, M. Wen, and S.-c. Cheung, “A study on prompt design,
advantages and limitations of chatGPT for deep learning program
repair,” 2023, arXiv:2304.08191.

[89] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Ex-
amining zero-shot vulnerability repair with large language models,” in
Proc. IEEE Symp. Secur. Privacy (SP), Los Alamitos, CA, USA: IEEE
Comput. Soc., 2022, pp. 1–18.

[90] Z. Fan, X. Gao, A. Roychoudhury, and S. H. Tan, “Automated repair
of programs from large language models,” 2022, arXiv:2205.10583.

[91] Y. Hu, X. Shi, Q. Zhou, and L. Pike, “Fix bugs with transformer
through a neural-symbolic edit grammar,” 2022, arXiv:2204.06643.

[92] C. S. Xia, Y. Wei, and L. Zhang, “Practical program repair in the era
of large pre-trained language models,” 2022, arXiv:2210.14179.

[93] J. Zhang et al., “Repairing bugs in python assignments using large
language models,” 2022, arXiv:2209.14876.

[94] M. Lajkó, V. Csuvik, and L. Vidács, “Towards javascript program
repair with generative pre-trained transformer (GPT-2),” in Proc. 3rd
Int. Workshop Automated Program Repair, 2022, pp. 61–68.

[95] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis of the
automatic bug fixing performance of chat,” 2023, arXiv:2301.08653.

[96] K. Huang et al., “An empirical study on fine-tuning large lan-
guage models of code for automated program repair,” in Proc. 38th
IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Luxembourg,
Piscataway, NJ, USA: IEEE Press, Sep. 2023, pp. 1162–1174, doi:
10.1109/ASE56229.2023.00181.

[97] M. C. Wuisang, M. Kurniawan, K. A. Wira Santosa, A. Agung Santoso
Gunawan, and K. E. Saputra, “An evaluation of the effectiveness
of openai’s chatGPT for automated python program bug fixing us-
ing quixbugs,” in Proc. Int. Seminar Appl. Technol. Inf. Commun.
(iSemantic), 2023, pp. 295–300.

[98] D. Horváth, V. Csuvik, T. Gyimóthy, and L. Vidács, “An extensive
study on model architecture and program representation in the domain
of learning-based automated program repair,” in Proc. IEEE/ACM
Int. Workshop Automated Program Repair (APR@ICSE), Melbourne,
Australia, Piscataway, NJ, USA: IEEE Press, May 2023, pp. 31–38,
doi: 10.1109/APR59189.2023.00013.

[99] J. A. Prenner, H. Babii, and R. Robbes, “Can openai’s codex fix bugs?
An evaluation on quixbugs,” in in Proc. 3rd Int. Workshop Automated
Program Repair, 2022, pp. 69–75.

[100] W. Yuan et al., “Circle: Continual repair across programming lan-
guages,” in Proc. 31st ACM SIGSOFT Int. Symp. Softw. Testing Anal.,
2022, pp. 678–690.

[101] S. Moon et al., “Coffee: Boost your code llms by fixing bugs with
feedback,” 2023, arXiv:2311.07215.

[102] Y. Wei, C. S. Xia, and L. Zhang, “Copiloting the copilots: Fusing
large language models with completion engines for automated program
repair,” in Proc. 31st ACM Joint Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng. (ESEC/FSE), San Francisco, CA, USA, S. Chandra, K.
Blincoe, and P. Tonella, Eds., New York, NY, USA: ACM, Dec. 2023,
pp. 172–184, doi: 10.1145/3611643.3616271.

[103] Y. Peng, S. Gao, C. Gao, Y. Huo, and M. R. Lyu, “Domain knowledge
matters: Improving prompts with fix templates for repairing python
type errors,” 2023. [Online]. Available: https://doi.org/10.48550/arXiv.
2306.01394

[104] A. E. I. Brownlee et al., “Enhancing genetic improvement mutations
using large language models,” in Proc. 15th Int. Symp. Search-Based
Softw. Eng. (SSBSE), San Francisco, CA, USA, P. Arcaini, T. Yue,
and E. M. Fredericks, Eds., vol. 14415. Cham, Switzerland: Springer
Nature, Dec. 2023, pp. 153–159, doi: 10.1007/978-3-031-48796-5_13.

[105] M. M. A. Haque, W. U. Ahmad, I. Lourentzou, and C. Brown, “Fix-
eval: Execution-based evaluation of program fixes for programming
problems,” in Proc. IEEE/ACM Int. Workshop Automated Program Re-
pair (APR@ICSE), Melbourne, Australia, Piscataway, NJ, USA: IEEE
Press, May 2023, pp. 11–18, doi: 10.1109/APR59189.2023.00009.

[106] B. Ahmad, S. Thakur, B. Tan, R. Karri, and H. Pearce, “Fix-
ing hardware security bugs with large language models,” 2023,
arXiv:2302.01215.

[107] P. Deligiannis, A. Lal, N. Mehrotra, and A. Rastogi, “Fixing rust
compilation errors using LLMs,” 2023. [Online]. Available: https://doi.
org/10.48550/arXiv.2308.05177

[108] F. Ribeiro, R. Abreu, and J. Saraiva, “Framing program repair as code
completion,” in Proc. 3rd Int. Workshop Automated Program Repair,
2022, pp. 38–45.

[109] N. Wadhwa et al., “Frustrated with code quality issues? LLMs can
help!” 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2309.
12938

[110] F. Ribeiro, J. N. C. de Macedo, K. Tsushima, R. Abreu, and J.
Saraiva, “GPT-3-powered type error debugging: Investigating the use of
large language models for code repair,” in Proc. 16th ACM SIGPLAN
Int. Conf. Softw. Lang. Eng. (SLE), Cascais, Portugal, J. Saraiva, T.
Degueule, and E. Scott, Eds., New York, NY, USA: ACM, Oct. 2023,
pp. 111–124, doi: 10.1145/3623476.3623522.

[111] Y. Wu et al., “How effective are neural networks for fixing security
vulnerabilities,” 2023, arXiv:2305.18607.

[112] N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language
models on automated program repair,” 2023, arXiv:2302.05020.

[113] M. Jin et al., “Inferfix: End-to-end program repair with LLMs,” 2023,
arXiv:2303.07263.

[114] C. S. Xia and L. Zhang, “Keep the conversation going: Fixing 162 out
of 337 bugs for $0.42 each using chatGPT,” 2023, arXiv:2304.00385.

[115] Y. Zhang, G. Li, Z. Jin, and Y. Xing, “Neural program repair with
program dependence analysis and effective filter mechanism,” 2023,
arXiv:2305.09315.

[116] J. A. Prenner and R. Robbes, “Out of context: How important is local
context in neural program repair?” 2023, arXiv:2312.04986.

[117] Q. Zhang, C. Fang, B. Yu, W. Sun, T. Zhang, and Z. Chen, “Pre-
trained model-based automated software vulnerability repair: How far
are we?” 2023. [Online]. Available: https://doi.org/10.48550/arXiv.
2308.12533

[118] S. Garg, R. Z. Moghaddam, and N. Sundaresan, “Rapgen: An approach
for fixing code inefficiencies in zero-shot,” 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2306.17077

[119] W. Wang, Y. Wang, S. Joty, and S. C. H. Hoi, “Rap-gen: Retrieval-
augmented patch generation with codet5 for automatic program repair,”
in Proc. 31st ACM Joint Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng. (ESEC/FSE), San Francisco, CA, USA, S. Chandra, K. Blincoe,
and P. Tonella, Eds., New York, NY, USA: ACM, Dec. 2023, pp. 146–
158, doi: 10.1145/3611643.3616256.

[120] Y. Zhang, Z. Jin, Y. Xing, and G. Li, “STEAM: Simulating the
interactive behavior of programmers for automatic bug fixing,” 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2308.14460

[121] S. Fakhoury, S. Chakraborty, M. Musuvathi, and S. K. Lahiri, “Towards
generating functionally correct code edits from natural language issue
descriptions,” 2023, arXiv:2304.03816.

[122] M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Phung, “Vul-
repair: A t5-based automated software vulnerability repair,” in Proc.
30th ACM Joint Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2022,
pp. 935–947.

[123] S. Gao, X. Wen, C. Gao, W. Wang, H. Zhang, and M. R. Lyu, “What
makes good in-context demonstrations for code intelligence tasks with
LLMs?” in Proc. 38th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Luxembourg, Piscataway, NJ, USA: IEEE Press, Sep. 2023,
pp. 761–773, doi: 10.1109/ASE56229.2023.00109.

[124] C. Treude and H. Hata, “She elicits requirements and he tests: Software
engineering gender bias in large language models,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2303.10131

[125] R. Kocielnik, S. Prabhumoye, V. Zhang, R. M. Alvarez, and A. Anand-
kumar, “Autobiastest: Controllable sentence generation for automated
and open-ended social bias testing in language models,” 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2302.07371

[126] M. Ciniselli, L. Pascarella, and G. Bavota, “To what extent do deep
learning-based code recommenders generate predictions by cloning
code from the training set?” in Proc. 19th IEEE/ACM Int. Conf. Mining
Softw. Repositories (MSR), Pittsburgh, PA, USA, New York, NY, USA:
ACM, 2022, pp. 167–178, doi: 10.1145/3524842.3528440.

[127] D. Erhabor, S. Udayashankar, M. Nagappan, and S. Al-Kiswany,
“Measuring the runtime performance of code produced with GitHub
copilot,” 2023. [Online]. Available: https://doi.org/10.48550/arXiv.
2305.06439

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.1109/ASE56229.2023.00181
https://doi.org/10.1109/APR59189.2023.00013
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.48550/arXiv.2306.01394
https://doi.org/10.48550/arXiv.2306.01394
https://doi.org/10.1007/978-3-031-48796-5_13
https://doi.org/10.1109/APR59189.2023.00009
https://doi.org/10.48550/arXiv.2308.05177
https://doi.org/10.48550/arXiv.2308.05177
https://doi.org/10.48550/arXiv.2309.12938
https://doi.org/10.48550/arXiv.2309.12938
https://doi.org/10.1145/3623476.3623522
https://doi.org/10.48550/arXiv.2308.12533
https://doi.org/10.48550/arXiv.2308.12533
https://doi.org/10.48550/arXiv.2306.17077
https://doi.org/10.1145/3611643.3616256
https://doi.org/10.48550/arXiv.2308.14460
https://doi.org/10.1109/ASE56229.2023.00109
https://doi.org/10.48550/arXiv.2303.10131
https://doi.org/10.48550/arXiv.2302.07371
https://doi.org/10.1145/3524842.3528440
https://doi.org/10.48550/arXiv.2305.06439
https://doi.org/10.48550/arXiv.2305.06439

WANG et al.: SOFTWARE TESTING WITH LARGE LANGUAGE MODELS: SURVEY, LANDSCAPE, AND VISION 935

[128] R. Wang, R. Cheng, D. Ford, and T. Zimmermann, “Investigating
and designing for trust in AI-powered code generation tools,” 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2305.11248

[129] B. Yetistiren, I. Özsoy, M. Ayerdem, and E. Tüzün, “Evaluating
the code quality of AI-assisted code generation tools: An empirical
study on github copilot, amazon codewhisperer, and ChatGPT,” 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2304.10778

[130] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proc. 18th Int. Conf. Eval.
Assessment in Softw. Eng. (EASE), London, U.K., M. J. Shepperd, T.
Hall, and I. Myrtveit, Eds., New York, NY, USA: ACM, May 2014,
pp. 38: 1–38:10, doi: 10.1145/2601248.2601268.

[131] A. Mastropaolo et al., “Studying the usage of text-to-text transfer
transformer to support code-related tasks,” in Proc. 43rd IEEE/ACM
Int. Conf. Softw. Eng. (ICSE), Madrid, Spain, Piscataway, NJ, USA:
IEEE Press, May 2021, pp. 336–347.

[132] C. Tsigkanos, P. Rani, S. Müller, and T. Kehrer, “Large language
models: The next frontier for variable discovery within metamorphic
testing?” in Proc. IEEE Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Taipa, Macao, T. Zhang, X. Xia, and N. Novielli, Eds., Piscataway,
NJ, USA: IEEE Press, Mar. 2023, pp. 678–682, doi: 10.1109/SANER
56733.2023.00070.

[133] P. Farrell-Vinay, Manage Software Testing. New York, NY, USA:
Auerbach, 2008.

[134] A. Mili and F. Tchier, Software Testing: Concepts and Operations.
Hoboken, NJ, USA: Wiley, 2015.

[135] S. Lukasczyk and G. Fraser, “Pynguin: Automated unit test gener-
ation for python,” in Proc. 44th IEEE/ACM Int. Conf. Softw. Eng.,
(ICSE) Companion, Pittsburgh, PA, USA, ACM/IEEE Press, May 2022,
pp. 168–172, doi: 10.1145/3510454.3516829.

[136] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Trans. Softw. Eng.,
vol. 41, no. 5, pp. 507–525, May 2015.

[137] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk,
“On learning meaningful assert statements for unit test cases,” in Proc.
42nd Int. Conf. Softw. Eng. (ICSE), Seoul, South Korea, G. Rother-
mel and D. Bae, Eds., New York, NY, USA: ACM, Jun./Jul. 2020,
pp. 1398–1409.

[138] Y. He et al., “Textexerciser: Feedback-driven text input exercising for
android applications,” in Proc. IEEE Symp. Secur. Privacy (SP), San
Francisco, CA, USA, Piscataway, NJ, USA: IEEE Press, May 2020,
pp. 1071–1087.

[139] A. Wei, Y. Deng, C. Yang, and L. Zhang, “Free lunch for testing:
Fuzzing deep-learning libraries from open source,” in Proc. 44th
IEEE/ACM 44th Int. Conf. Softw. Eng. (ICSE), Pittsburgh, PA, USA,
New York, NY, USA: ACM, May 2022, pp. 995–1007.

[140] D. Xie et al., “Docter: Documentation-guided fuzzing for testing deep
learning API functions,” in Proc. 31st ACM SIGSOFT Int. Symp.
Softw. Testing Anal. (ISSTA), Virtual Event, South Korea, S. Ryu
and Y. Smaragdakis, Eds., New York, NY, USA: ACM, Jul. 2022,
pp. 176–188.

[141] Q. Guo et al., “Audee: Automated testing for deep learning frame-
works,” in Proc. 35th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Melbourne, Australia, Piscataway, NJ, USA: IEEE Press, Sep.
2020, pp. 486–498.

[142] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning library
testing via effective model generation,” in Proc. 28th ACM Joint Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE), Virtual Event,
USA, P. Devanbu, M. B. Cohen, and T. Zimmermann, Eds., New York,
NY, USA: ACM, Nov. 2020, pp. 788–799.

[143] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proc. 27th
ACM SIGSOFT Int. Symp. Softw. Testing Anal., New York, NY, USA:
ACM, 2018, pp. 298–309, doi: 10.1145/3213846.3213871.

[144] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in Proc. 40th
Int. Conf. Softw. Eng., New York, NY, USA: ACM, 2018, pp. 1–11,
doi: 10.1145/3180155.3180233.

[145] Y. Xiong et al., “Precise condition synthesis for program repair,”
in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. (ICSE), 2017,
pp. 416–426.

[146] J. Xuan et al., “Nopol: Automatic repair of conditional statement bugs
in java programs,” IEEE Trans. Softw. Eng., vol. 43, no. 1, pp. 34–55,
Jan. 2017.

[147] S. Song, X. Li, and S. Li, “How to bridge the gap between modalities:
A comprehensive survey on multimodal large language model,” 2023,
arXiv:2311.07594.

[148] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” IEEE Trans. Softw. Eng., vol. 48,
no. 2, pp. 1–36, Jan. 2022.

[149] F. Tu, J. Zhu, Q. Zheng, and M. Zhou, “Be careful of when: An
empirical study on time-related misuse of issue tracking data,” in Proc.
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.
(ESEC/SIGSOFT FSE), Lake Buena Vista, FL, USA, G. T. Leavens,
A. Garcia, and C. S. Pasareanu, Eds., New York, NY, USA: ACM,
Nov. 2018, pp. 307–318, doi: 10.1145/3236024.3236054.

[150] Z. Sun, L. Li, Y. Liu, X. Du, and L. Li, “On the importance of
building high-quality training datasets for neural code search,” in
Proc. 44th IEEE/ACM Int. Conf. Softw. Eng. (ICSE), Pittsburgh, PA,
USA, Piscataway, NJ, USA: ACM, May 2022, pp. 1609–1620, doi:
10.1145/3510003.3510160.

[151] L. Shi et al., “ISPY: Automatic issue-solution pair extraction from
community live chats,” in Proc. 36th IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), Melbourne, Australia, Piscataway, NJ, USA:
IEEE Press, Nov. 2021, pp. 142–154, doi: 10.1109/ASE51524.2021.
9678894.

[152] D. Guo et al., “GraphCodeBERT: Pre-training code representations
with data flow,” in Proc. 9th Int. Conf. Learn. Representations
(ICLR), Virtual Event, Austria, May 2021. [Online]. Available: https://
openreview.net/forum?id=jLoC4ez43PZ

[153] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao, “Lsun:
Construction of a large-scale image dataset using deep learning with
humans in the loop,” 2015, arXiv:1506.03365.

[154] “Loadrunner, Inc.” Accessed: Dec. 27, 2023. [Online]. Available:
microfocus.com

[155] “Langchain, Inc.” Accessed: Dec. 27, 2023. [Online]. Available: https://
docs.langchain.com/docs/

[156] Prompt Engineering. “Prompt engineering guide.” GitHub. Accessed:
Dec. 27, 2023. [Online]. Available: https://github.com/dair-ai/Prompt-
Engineering-Guide

[157] Z. Zhang, A. Zhang, M. Li, H. Zhao, G. Karypis, and A. Smola,
“Multimodal chain-of-thought reasoning in language models,” 2023,
arXiv:2302.00923.

[158] Z. Liu, X. Yu, Y. Fang, and X. Zhang, “Graphprompt: Unifying pre-
training and downstream tasks for graph neural networks,” in Proc.
ACM Web Conf. (WWW), Austin, TX, USA, Y. Ding, J. Tang, J. F.
Sequeda, L. Aroyo, C. Castillo, and G. Houben, Eds., New York, NY,
USA: ACM, Apr./May 2023, pp. 417–428.

[159] Y. Charalambous, N. Tihanyi, R. Jain, Y. Sun, M. A. Ferrag, and L.
C. Cordeiro, “A new era in software security: Towards self-healing
software via large language models and formal verification,” 2023,
arXiv:2305.14752.

[160] S. Wang et al., “Machine/deep learning for software engineering: A
systematic literature review,” IEEE Trans. Softw. Eng., vol. 49, no. 3,
pp. 1188–1231, Mar. 2023, doi: 10.1109/TSE.2022.3173346.

[161] Y. Yang, X. Xia, D. Lo, and J. C. Grundy, “A survey on deep learning
for software engineering,” ACM Comput. Surv., vol. 54, no. 10s,
pp. 206: 1–206:73, 2022, doi: 10.1145/3505243.

[162] C. Watson, N. Cooper, D. Nader-Palacio, K. Moran, and D.
Poshyvanyk, “A systematic literature review on the use of deep learning
in software engineering research,” ACM Trans. Softw. Eng. Methodol.,
vol. 31, no. 2, pp. 32:1–32:58, 2022, doi: 10.1145/3485275.

[163] M. Bajammal, A. Stocco, D. Mazinanian, and A. Mesbah, “A survey
on the use of computer vision to improve software engineering tasks,”
IEEE Trans. Softw. Eng., vol. 48, no. 5, pp. 1722–1742, May 2022,
doi: 10.1109/TSE.2020.3032986.

[164] X. Hou et al., “Large language models for software engineering: A
systematic literature review,” 2023. [Online]. Available: https://doi.
org/10.48550/arXiv.2308.10620

[165] A. Fan et al., “Large language models for software engineering:
Survey and open problems,” 2023. [Online]. Available: https://doi.
org/10.48550/arXiv.2310.03533

[166] D. Zan et al., “Large language models meet NL2Code: A survey,”
in Proc. 61st Annu. Meeting Assoc. Comput. Linguistics (Vol.
1, Long Papers) (ACL), Toronto, ON, Canada, A. Rogers, J. L.
Boyd-Graber, and N. Okazaki, Eds., Association for Computational
Linguistics, Jul. 2023, pp. 7443–7464, doi: 10.18653/v1/2023.acl-
long.411.

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.48550/arXiv.2305.11248
https://doi.org/10.48550/arXiv.2304.10778
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1109/SANER56733.2023.00070
https://doi.org/10.1109/SANER56733.2023.00070
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1145/3236024.3236054
https://doi.org/10.1145/3510003.3510160
https://doi.org/10.1109/ASE51524.2021.9678894
https://doi.org/10.1109/ASE51524.2021.9678894
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://microfocus.com
https://docs.langchain.com/docs/
https://docs.langchain.com/docs/
https://github.com/dair-ai/Prompt-Engineering-Guide
https://github.com/dair-ai/Prompt-Engineering-Guide
https://doi.org/10.1109/TSE.2022.3173346
https://doi.org/10.1145/3505243
https://doi.org/10.1145/3485275
https://doi.org/10.1109/TSE.2020.3032986
https://doi.org/10.48550/arXiv.2308.10620
https://doi.org/10.48550/arXiv.2308.10620
https://doi.org/10.48550/arXiv.2310.03533
https://doi.org/10.48550/arXiv.2310.03533
https://doi.org/10.18653/v1/2023.acl-long.411
https://doi.org/10.18653/v1/2023.acl-long.411

936 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 4, APRIL 2024

Junjie Wang (Member, IEEE) received the Ph.D.
degree from ISCAS, in 2015. She is a Research
Professor with the Institute of Software, Chinese
Academy of Sciences (ISCAS). She was a Visiting
Scholar with North Carolina State University from
September 2017 to September 2018 and worked
with Prof. Tim Menzies. Her research interests in-
clude AI for software engineering, software testing,
and software analytics. She has more than 50 high-
quality publications including IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, ICSE, TOSEM, FSE,
and ASE, and five of them has received the Distinguished/Best Paper Award,
respectively at ICSE 2019, ICSE 2020, and ICPC 2022. She is currently
serving as an Associate Editor of IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING. For more information, see https://people.ucas.edu.cn/0058217?
language=en

Yuchao Huang is a Doctoral Student with the
Institute of Software Research, Chinese Academy
of Sciences (ISCAS). His research interests in-
clude software engineering, mobile testing, and
deep learning. He has published four papers at top-
tier international software engineering conferences,
including ICSE and FSE. Specifically, he applies
AI and LLM technology in the AI(LLM)-assisted
automated mobile GUI bug replay.

Chunyang Chen received the bachelor’s degree
from BUPT, China and the Ph.D. degree from
NTU, Singapore. He is a Full Professor with the
School of Computation, Information and Technol-
ogy, Technical University of Munich, Germany. His
main research interest includes automated software
engineering, especially data-driven mobile app de-
velopment. Besides, he is also interested in human–
computer interaction and software security. His
research has won awards including ACM SIGSOFT
Early Career Researcher Award, Facebook Research

Award, four ACM SIGSOFT Distinguished Paper Awards (ICSE’23/21/20,
ASE’18), and multiple best paper/demo awards. For more information, see
https://chunyang-chen.github.io/

Zhe Liu received the Ph.D. degree from the
University of Chinese Academy of Sciences, in
2023. He is an Assistant Researcher with the In-
stitute of Software Chinese Academy of Sciences.
His research interests include software engineer-
ing, mobile testing, deep learning, and human–
computer interaction. He has published 15 papers
at top-tier international software engineering confer-
ences/journals, including IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, ICSE, CHI, and ASE.
Specifically, he applies AI and light-weight program

analysis technology in the following directions: AI(LLM)-assisted automated
mobile GUI testing, usability, and bug replay, human machine collaborative
testing including testing guide for testers, AI-empowered mining software
repository including issue report mining. He received the ACM Student
Research Competition (SRC) 2023 Grand Finals Winners, 1st Place, Graduate
Category. For more information, see https://zheliu6.github.io/

Song Wang (Member, IEEE) received the dual
B.E. degrees from Sichuan University, the mas-
ter’s degree from the Institute of Software Chinese
Academy of Sciences, and the Ph.D. degree from
the University of Waterloo. He is an Assistant
Professor with York University, Canada. He worked
at the intersection of software engineering and
artificial intelligence. He has more than 50 high-
quality publications including IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, ICSE, TOSEM, FSE,
and ASE, and is the recipient of four Distin-

guished/Best Paper Awards. He is currently serving as an Associate Editor of
ACM Transactions on Software Engineering (TOSEM). For more information,
see https://www.eecs.yorku.ca/wangsong/index.html

Qing Wang (Member, IEEE) is a Research Profes-
sor with the Institute of Software Chinese Academy
of Sciences (ISCAS). She is also the Deputy Chief
Engineer of ISCAS, and the Director of State Key
Laboratory of Intelligent Game of ISCAS. Her
research lies in the area of software process, soft-
ware quality assurance, and artificial intelligence for
software engineering. She currently serves as the
member of the International Software and Systems
Processes Association (ISSPA), the member of the
International Software Engineering Research Net-

work (ISERN), the Editorial Board of Information and Software Technology
Journal (IST) and Journal of Software Evolution and Process (JSEP), the
Deputy Chair of Software Quality and Testing Group in China National Infor-
mation Technology Standardization (SAC/TC28/SC7/WG1), and the CMMI
lead appraisal. She has edited/co-edited five books, and published more than
100 papers in high-level conferences and journals.

Authorized licensed use limited to: McMaster University. Downloaded on March 02,2025 at 04:15:28 UTC from IEEE Xplore. Restrictions apply.

https://people.ucas.edu.cn/ 0058217?language=en
https://people.ucas.edu.cn/ 0058217?language=en
https://chunyang-chen.github.io/
https://zheliu6.github.io/
https://www.eecs.yorku.ca/ wangsong/index.html

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

